The Merging of Traditional QA and Monitoring is the Future of Dev
April 12, 2021

Richard Whitehead
Moogsoft

We're all familiar with the process of QA within the software development cycle. Developers build a product and send it to QA engineers, who test and bless it before pushing it into the world. After release, a different team of SREs with their own toolset then monitor for issues and bugs. Now, a new level of customer expectations for speed and reliability have pushed businesses further toward delivering rapid product iterations and innovations to keep up with customer demands. This leaves little time to run the traditional development process. QA can no longer act as a major, individual step.

Fortunately, modern, automated infrastructure as code (IAC)-built toolchains that deliver continuous observability now let SRE teams watch the entire build pipeline from the first piece of code through release. This enables a whole new speed within the delivery cycle and merges the traditional roles of QA and monitoring.

Helping "the Human in the Middle"

Without a proper QA process, any change dev teams make to digital systems can have cascading effects on the infrastructure. This only further stresses the SRE team to find and fix issues after deployment. And changes are happening faster than ever. As a result, we meet the juxtaposition between the need for QA and the limited time to work the process into the development cycle as a standalone step.

Observability (mining deep data from distributed systems) delivers the data necessary to eliminate traditional QA, but that isn't enough. Humans still need help. When you apply AI to this observability data (intelligent observability), teams can analyze data at machine speed. This lets DevOps practitioners and SREs view the entire product lifecycle, from early development to daily performance, through the lens of quality.

The use of intelligent observability helps teams find the needle in the proverbial haystack of data — the root causes of issues within digital systems — instantly. It also helps identify actionable ways to quickly resolve a new product's impacts on the infrastructure. Without this capability, we revert to the old way of doing things where the dev team has QA find the needle instead. This new continuous learning and intelligent collaboration creates a merging of traditional QA and monitoring for a CI/CD pipeline that actually works.

Integrating observability with AI into the development cycle creates an opportunity to monitor expected outcomes much closer, enabling "the human in the middle" to spot change almost instantly. If the system starts behaving dramatically differently after a deployment, SREs and DevOps practitioners can see it and intervene immediately, without the need to wait for a QA team. If nothing changes or the system improves, they know there's no need to remediate a deployment.

In cases where a change in performance is expected, it was traditionally incumbent on the developer to modify the unit tests or to communicate the change to the QA team. Now, AI- and ML-based systems' change tolerance reduces IT teams' effort. For example, if you're monitoring a KPI with an adaptive thresholding algorithm, you can simply let the algorithm re-train and learn the new behavior instead of relying on the dev team to communicate the expected change in performance to QA.

Merged Systems Support DevOps Three Ways

A merged system of QA and monitoring throughout the development cycle also aligns with the DevOps Three Ways principles. We look at the First Way: flow/system thinking, the Second Way: amplifying feedback loops, and the Third Way: creating a culture of continual experimentation and learning, as the guiding principles behind DevOps practices.

The merging of traditional QA and monitoring supports the First Way — flow/system thinking — by building a holistic system view of the development process with the elimination of siloed workflows. This creates quality throughout development and delivery because the system is never optimized for local efficiency only or passed onto the next step with a known issue.

A merge also supports the Second Way — amplifying feedback loops — by giving IT teams clear, consistent feedback throughout the development and delivery process. As traditional QA and monitoring merge, the need to loop feedback through multiple teams with various processes and priorities evaporates.

This merge perhaps has the greatest impact on the Third Way. As DevOps practitioners focus on the holistic product cycle versus quick development that's passed off to QA, they can learn from bugs and build constant improvement into their process. This also gives them room to experiment and take risks. Infusing quality into the development process itself means they won't hand over garbage to the QA team — no matter how "out there" the forthcoming release might be.

Integrating observability with AI into the development cycle allows teams to not only see into systems as they're being built, but also identify actionable ways to resolve a new product's impacts on the overall infrastructure. As DevOps practitioners and SREs balance change, these actionable insights empower the merging of traditional QA and monitoring for a whole new speed of delivery — delivering better customer experiences and giving your business the ability to launch competitive, innovative services faster than ever.

Richard Whitehead is Chief Evangelist at Moogsoft
Share this

Industry News

January 16, 2025

Mendix, a Siemens business, announced the general availability of Mendix 10.18.

January 16, 2025

Red Hat announced the general availability of Red Hat OpenShift Virtualization Engine, a new edition of Red Hat OpenShift that provides a dedicated way for organizations to access the proven virtualization functionality already available within Red Hat OpenShift.

January 16, 2025

Contrast Security announced the release of Application Vulnerability Monitoring (AVM), a new capability of Application Detection and Response (ADR).

January 15, 2025

Red Hat announced the general availability of Red Hat Connectivity Link, a hybrid multicloud application connectivity solution that provides a modern approach to connecting disparate applications and infrastructure.

January 15, 2025

Appfire announced 7pace Timetracker for Jira is live in the Atlassian Marketplace.

January 14, 2025

SmartBear announced the availability of SmartBear API Hub featuring HaloAI, an advanced AI-driven capability being introduced across SmartBear's product portfolio, and SmartBear Insight Hub.

January 14, 2025

Azul announced that the integrated risk management practices for its OpenJDK solutions fully support the stability, resilience and integrity requirements in meeting the European Union’s Digital Operational Resilience Act (DORA) provisions.

January 14, 2025

OpsVerse announced a significantly enhanced DevOps copilot, Aiden 2.0.

January 13, 2025

Progress received multiple awards from prestigious organizations for its inclusive workplace, culture and focus on corporate social responsibility (CSR).

January 13, 2025

Red Hat has completed its acquisition of Neural Magic, a provider of software and algorithms that accelerate generative AI (gen AI) inference workloads.

January 13, 2025

Code Intelligence announced the launch of Spark, an AI test agent that autonomously identifies bugs in unknown code without human interaction.

January 09, 2025

Checkmarx announced a new generation in software supply chain security with its Secrets Detection and Repository Health solutions to minimize application risk.

January 08, 2025

SmartBear has appointed Dan Faulkner, the company’s Chief Product Officer, as Chief Executive Officer.

January 07, 2025

Horizon3.ai announced the release of NodeZero™ Kubernetes Pentesting, a new capability available to all NodeZero users.

January 06, 2025

GitHub announced GitHub Copilot Free.