Test Smarter Not Harder: Shift Testing Left and Right with Test Impact Analysis - Part 2
August 19, 2019

Mark Lambert
Applitools

Software testing is still a bottleneck, even after the implementation of modern development processes like Agile, DevOps, and Continuous Integration/Deployment. In some cases, software teams aren't testing nearly enough and have to deal with bugs and security vulnerabilities at the later stages of the development cycle, which creates a false assumption that these new processes can't deliver on their promise. One solution to certain classes of issues is shift right testing, which relies on monitoring the application in a production environment, but it requires a rock solid infrastructure to roll back new changes if a critical defect arises.

Start with Test Smarter Not Harder: Shift Testing Left and Right with Test Impact Analysis - Part 1

Testing Smarter, Not Harder, by Focusing Your Testing

Most software isn't fully tested, and the decision of what to test is essentially based on developers' best guesses about what is critical functionality. During a SCRUM sprint, or an iteration in other processes, it's difficult to determine what to test, because, of course, "test everything" isn't an option. Since timelines are short, only parts of the software that were updated by the latest functionality can be tested, but exactly what code is impacted is usually unknown. Test automation helps, but without understanding exactly where and what to test, test coverage is inadequate.

These shortcomings can be overcome by using test impact analysis, which is a multivariate analysis of test coverage, code changes, and dependencies that pinpoints exactly what code needs to be tested. In addition, these exact tests can be scheduled and executed automatically.

Test impact analysis works at the developer level within the IDE, collecting information about which code is exercised by which tests, and applies that information within the developer's IDE as the developer is changing code, enabling the developer to easily identify and execute the specific tests that need to be run to verify that the changed code doesn't break any tests. Also, keeping track of which affected tests have been run, which have passed, and which have failed, makes it easy for the developer to determine which tests still need to be run, or which tests have failed and need to be addressed. Once all tests have been run and are passing, the developer knows that it's safe to commit their code and move on.

Test impact analysis works within a CI/CD process by integrating seamlessly into a project's build system, to get immediate feedback on changes. Test impact analysis identifies which code has changed since the baseline build (i.e. the last nightly build), determines which tests need to be run to exercise that code, and then runs just that subset of tests. This workflow enables teams to set up CI jobs that only run tests based on the most recent code changes, shrinking the amount of time it takes to run a CI job from hours to minutes.

Test impact analysis provides the following key benefits:

Understand what each test covers: Automatically correlating test execution data with test coverage data identifies which tests need to be run, based on the code currently being developed. Users save time without having to run unnecessary tests, and teams benefit from immediate feedback during development and after code check-in.

Understand what has changed: Developers often don't know which tests to run to validate code changes, so they either check their code in without running any tests (a very bad practice), or they run only one or two tests that they know about (which easily misses some), or they run all of their tests (which wastes time). Test impact analysis immediately identifies which tests are related to which code changes and are automatically executed. Checked-in code becomes more stable since it has been thoroughly tested prior to check-in.

Focus on tests that validate changes and impacted dependencies: Identifying and running just the set of tests needed to verify all of the code changes, and affected dependencies, that have been committed since the last baseline build (usually the nightly build), significantly decreasing the amount of time it takes to run CI. This allows teams to benefit from a true CI process.

Immediate and Ongoing Feedback: Identifying not just direct dependencies between tests and code, but indirect dependencies as well, test impact analysis helps teams understand as soon as possible after code is checked in whether the code broke any tests.

Summary

To greatly decrease the testing bottleneck in development to improve the efficiency of the "saw tooth" effort that testers put into every iteration, development teams can benefit from test impact analysis technology. Test automation with test impact analysis means focusing testing specifically on changes made during each iteration, and testing exactly what needs to be tested, automatically. These teams optimize their in-development testing effort with instant feedback on what needs to be done, what code fails testing, and what other code is impacted by new changes.

Mark Lambert is VP and Evangelist at Applitools
Share this

Industry News

December 19, 2024

Check Point® Software Technologies Ltd. has been recognized as a Leader in the 2024 Gartner® Magic Quadrant™ for Email Security Platforms (ESP).

December 19, 2024

Progress announced its partnership with the American Institute of CPAs (AICPA), the world’s largest member association representing the CPA profession.

December 18, 2024

Kurrent announced $12 million in funding, its rebrand from Event Store and the official launch of Kurrent Enterprise Edition, now commercially available.

December 18, 2024

Blitzy announced the launch of the Blitzy Platform, a category-defining agentic platform that accelerates software development for enterprises by autonomously batch building up to 80% of software applications.

December 17, 2024

Sonata Software launched IntellQA, a Harmoni.AI powered testing automation and acceleration platform designed to transform software delivery for global enterprises.

December 17, 2024

Sonar signed a definitive agreement to acquire Tidelift, a provider of software supply chain security solutions that help organizations manage the risk of open source software.

December 17, 2024

Kindo formally launched its channel partner program.

December 16, 2024

Red Hat announced the latest release of Red Hat Enterprise Linux AI (RHEL AI), Red Hat’s foundation model platform for more seamlessly developing, testing and running generative artificial intelligence (gen AI) models for enterprise applications.

December 16, 2024

Fastly announced the general availability of Fastly AI Accelerator.

December 12, 2024

Amazon Web Services (AWS) announced the launch and general availability of Amazon Q Developer plugins for Datadog and Wiz in the AWS Management Console.

December 12, 2024

vFunction released new capabilities that solve a major microservices headache for development teams – keeping documentation current as systems evolve – and make it simpler to manage and remediate tech debt.

December 11, 2024

CyberArk announced the launch of FuzzyAI, an open-source framework that helps organizations identify and address AI model vulnerabilities, like guardrail bypassing and harmful output generation, in cloud-hosted and in-house AI models.

December 11, 2024

Grid Dynamics announced the launch of its developer portal.

December 10, 2024

LTIMindtree announced a strategic partnership with GitHub.