Red Hat OpenShift AI 2.9 Released
May 07, 2024

Red Hat announced advances in Red Hat OpenShift AI, an open hybrid artificial intelligence (AI) and machine learning (ML) platform built on Red Hat OpenShift that enables enterprises to create and deliver AI-enabled applications at scale across hybrid clouds.

These updates highlight Red Hat’s vision for AI, bringing Red Hat’s commitment to customer choice to the world of intelligent workloads, from the underlying hardware to the services and tools, such as Jupyter and PyTorch, used to build on the platform. This provides faster innovation, increased productivity and the capacity to layer AI into daily business operations through a more flexible, scalable and adaptable open source platform that enables both predictive and generative models, with or without the use of cloud environments.

Red Hat’s AI strategy enables flexibility across the hybrid cloud, provides the ability to enhance pre-trained or curated foundation models with their customer data and the freedom to enable a variety of hardware and software accelerators. Red Hat OpenShift AI’s new and enhanced features deliver on these needs through access to the latest AI/ML innovations and support from an expansive AI-centric partner ecosystem.

The latest version of the platform, Red Hat OpenShift AI 2.9, delivers:

- Model serving at the edge extends the deployment of AI models to remote locations using single-node OpenShift. It provides inferencing capabilities in resource-constrained environments with intermittent or air-gapped network access. This technology preview feature provides organizations with a scalable, consistent operational experience from core to cloud to edge and includes out-of-the-box observability.

- Enhanced model serving with the ability to use multiple model servers to support both predictive and GenAI, including support for KServe, a Kubernetes custom resource definition that orchestrates serving for all types of models, vLLM and text generation inference server (TGIS), serving engines for LLMs and Caikit-nlp-tgis runtime, which handles natural language processing (NLP) models and tasks. Enhanced model serving allows users to run predictive and GenAI on a single platform for multiple use cases, reducing costs and simplifying operations. This enables out-of-the-box model serving for LLMs and simplifies the surrounding user workflow.

- Distributed workloads with Ray, using CodeFlare and KubeRay, which uses multiple cluster nodes for faster, more efficient data processing and model training. Ray is a framework for accelerating AI workloads, and KubeRay helps manage these workloads on Kubernetes. CodeFlare is central to Red Hat OpenShift AI’s distributed workload capabilities, providing a user-friendly framework that helps simplify task orchestration and monitoring. The central queuing and management capabilities enable optimal node utilization, and enable the allocation of resources, such as GPUs, to the right users and workloads.

- Improved model development through project workspaces and additional workbench images that provide data scientists the flexibility to use IDEs and toolkits, including VS Code and RStudio, currently available as a technology preview, and enhanced CUDA, for a variety of use cases and model types.

- Model monitoring visualizations for performance and operational metrics, improving observability into how AI models are performing.

- New accelerator profiles enable administrators to configure different types of hardware accelerators available for model development and model-serving workflows. This provides simple, self-service user access to the appropriate accelerator type for a specific workload.

Share this

Industry News

January 09, 2025

Checkmarx announced a new generation in software supply chain security with its Secrets Detection and Repository Health solutions to minimize application risk.

January 08, 2025

SmartBear has appointed Dan Faulkner, the company’s Chief Product Officer, as Chief Executive Officer.

January 07, 2025

Horizon3.ai announced the release of NodeZero™ Kubernetes Pentesting, a new capability available to all NodeZero users.

January 06, 2025

GitHub announced GitHub Copilot Free.

January 06, 2025

Veracode acquired certain assets of Phylum, including its malicious package analysis, detection, and mitigation technology.

January 06, 2025

AppViewX announced the completion of its acquisition by Haveli Investments.

December 19, 2024

Check Point® Software Technologies Ltd. has been recognized as a Leader in the 2024 Gartner® Magic Quadrant™ for Email Security Platforms (ESP).

December 19, 2024

Progress announced its partnership with the American Institute of CPAs (AICPA), the world’s largest member association representing the CPA profession.

December 18, 2024

Kurrent announced $12 million in funding, its rebrand from Event Store and the official launch of Kurrent Enterprise Edition, now commercially available.

December 18, 2024

Blitzy announced the launch of the Blitzy Platform, a category-defining agentic platform that accelerates software development for enterprises by autonomously batch building up to 80% of software applications.

December 17, 2024

Sonata Software launched IntellQA, a Harmoni.AI powered testing automation and acceleration platform designed to transform software delivery for global enterprises.

December 17, 2024

Sonar signed a definitive agreement to acquire Tidelift, a provider of software supply chain security solutions that help organizations manage the risk of open source software.

December 17, 2024

Kindo formally launched its channel partner program.

December 16, 2024

Red Hat announced the latest release of Red Hat Enterprise Linux AI (RHEL AI), Red Hat’s foundation model platform for more seamlessly developing, testing and running generative artificial intelligence (gen AI) models for enterprise applications.

December 16, 2024

Fastly announced the general availability of Fastly AI Accelerator.