The Cloud Native Computing Foundation® (CNCF®), which builds sustainable ecosystems for cloud native software, is making significant updates to its certification offerings.
Red Hat announced the latest release of Red Hat Enterprise Linux AI (RHEL AI), Red Hat’s foundation model platform for more seamlessly developing, testing and running generative artificial intelligence (gen AI) models for enterprise applications.
RHEL AI 1.3 brings support for the latest advancements in the Granite large language model (LLM) family and incorporates open source advancements for data preparation while still maintaining expanded choice for hybrid cloud deployments, including the underlying accelerated compute architecture.
RHEL AI forms a key pillar for Red Hat’s AI vision, bringing together the open source-licensed Granite model family and InstructLab model alignment tools, based on the Large-scale Alignment for chatBots (LAB) methodology. These components are then packaged as an optimized, bootable Red Hat Enterprise Linux image for individual server deployments anywhere across the hybrid cloud.
- Support for Granite 3.0 LLMs: RHEL AI 1.3 extends Red Hat’s commitment to Granite LLMs with support for Granite 3.0 8b English language use cases. Granite 3.0 8b is a converged model, supporting not only English but a dozen other natural languages, code generation and function calling. Non-English language use cases, as well as code and functions, are available as a developer preview within RHEL AI 1.3, with the expectation that these capabilities will be supported in future RHEL AI releases.
- Simplifying data preparation with Docling: Recently open sourced by IBM Research, Docling is an upstream community project that helps parse common document formats and convert them into formats like Markdown and JSON, preparing this content for gen AI applications and training. RHEL AI 1.3 now incorporates this innovation as a supported feature, enabling users to convert PDFs into Markdown for simplified data ingestion for model tuning with InstructLab. Through Docling, RHEL AI 1.3 now also includes context-aware chunking, which takes into account the structure and semantic elements of the documents used for gen AI training. This helps resulting gen AI applications maintain better levels of coherency and contextually-appropriate responses to questions and tasks, which otherwise would require further tuning and alignment. Future RHEL AI releases will continue to support and refine Docling components, including additional document formats as well as integration for retrieval-augmented generation (RAG) pipelines in addition to InstructLab knowledge tuning.
- Broadening the gen AI ecosystem: Choice is a fundamental component of the hybrid cloud and with gen AI serving as a signature workload for hybrid environments, this optionality needs to start with the underlying chip architectures. RHEL AI already supports leading accelerators from NVIDIA and AMD, and the 1.3 release now includes Intel Gaudi 3 as a technology preview. Beyond chip architecture, RHEL AI is supported across major cloud providers, including AWS, Google Cloud and Microsoft Azure consoles as a “bring your own subscription” (BYOS) offering. The platform is also available soon as an optimized and validated solution option on Azure Marketplace and AWS Marketplace. RHEL AI is available as a preferred foundation model platform on accelerated hardware offerings from Red Hat partners, including Dell PowerEdge R760xa servers and Lenovo ThinkSystem SR675 V3 servers.
- Model serving improvements with Red Hat OpenShift AI: As users look to scale out the serving of LLMs, Red Hat OpenShift AI now supports parallelized serving across multiple nodes with vLLM runtimes, providing the ability to handle multiple requests in real-time. Red Hat OpenShift AI also allows users to dynamically alter an LLM’s parameters when being served, such as sharding the model across multiple GPUs or quantizing the model to a smaller footprint. These improvements are aimed at speeding up response time for users, increasing customer satisfaction and lowering churn.
- Supporting Red Hat AI: RHEL AI, along with Red Hat OpenShift AI, underpins Red Hat AI, Red Hat’s portfolio of solutions that accelerate time to market and reduce the operational cost of delivering AI solutions across the hybrid cloud. RHEL AI supports individual Linux server environments, while Red Hat OpenShift AI powers distributed Kubernetes platform environments and provides integrated machine-learning operations (MLOps) capabilities. Both solutions are compatible with each other, with Red Hat OpenShift AI will incorporate all of RHEL AI’s capabilities to be delivered at scale.
RHEL AI 1.3 is now generally available.
Industry News
The Cloud Native Computing Foundation® (CNCF®), which builds sustainable ecosystems for cloud native software, announced the Golden Kubestronaut program, a distinguished recognition for professionals who have demonstrated the highest level of expertise in Kubernetes, cloud native technologies, and Linux administration.
Red Hat announced new capabilities and enhancements for Red Hat Developer Hub, Red Hat’s enterprise-grade internal developer portal based on the Backstage project.
Platform9 announced that Private Cloud Director Community Edition is generally available.
Sonatype expanded support for software development in Rust via the Cargo registry to the entire Sonatype product suite.
CloudBolt Software announced its acquisition of StormForge, a provider of machine learning-powered Kubernetes resource optimization.
Mirantis announced the k0rdent Application Catalog – with 19 validated infrastructure and software integrations that empower platform engineers to accelerate the delivery of cloud-native and AI workloads wherever the\y need to be deployed.
Traefik Labs announced its Kubernetes-native API Management product suite is now available on the Oracle Cloud Marketplace.
webAI and MacStadium(link is external) announced a strategic partnership that will revolutionize the deployment of large-scale artificial intelligence models using Apple's cutting-edge silicon technology.
Development work on the Linux kernel — the core software that underpins the open source Linux operating system — has a new infrastructure partner in Akamai. The company's cloud computing service and content delivery network (CDN) will support kernel.org, the main distribution system for Linux kernel source code and the primary coordination vehicle for its global developer network.
Komodor announced a new approach to full-cycle drift management for Kubernetes, with new capabilities to automate the detection, investigation, and remediation of configuration drift—the gradual divergence of Kubernetes clusters from their intended state—helping organizations enforce consistency across large-scale, multi-cluster environments.
Red Hat announced the latest updates to Red Hat AI, its portfolio of products and services designed to help accelerate the development and deployment of AI solutions across the hybrid cloud.
CloudCasa by Catalogic announced the availability of the latest version of its CloudCasa software.
BrowserStack announced the launch of Private Devices, expanding its enterprise portfolio to address the specialized testing needs of organizations with stringent security requirements.
Chainguard announced Chainguard Libraries, a catalog of guarded language libraries for Java built securely from source on SLSA L2 infrastructure.