Progress announced new powerful capabilities and enhancements in the latest release of Progress® Sitefinity®.
Among the industry segments contributing to climate change, Information and Communications Technology (ICT) represents over 10% of the total energy demand and generates about 2% of global CO2 emissions. The bulk of ICT's electricity demand comes from operating data centers. By 2030, their electricity demand is likely to grow 15 times or more despite their use of energy-efficient technology, suggest studies2.
The increase in demand for data center resources, and the resulting increased in carbon footprint, is driven largely by software development across technology trends in enterprise IT, viz., big data, AI/ML, blockchain, crypto, and IoT. Organizations can develop and use software to reduce their carbon footprint, as outlined by the Green Software Foundation. Enterprise IT teams can adopt the principles of green software engineering in their journey to reach sustainability goals. DevOps practices are key enablers for them to improve carbon awareness and carbon-aware automation. Here's how DevOps teams can contribute to meeting sustainability goals.
1. Publish resource usage metrics for all CI/CD pipeline processes
Classical performance metrics are good proxies to get the relative energy consumption of CI/CD processes. Observability and application performance monitoring tools can collate these metrics which can then be published on DevOps dashboards.
2. Combine “change failure rate” with resource usage metrics
This helps us understand the wasted energy due to the failed CI/CD processes and provide resolutions. For example, a pipeline with a failure rate of 50% may have negligible energy consumption compared to one with only a 5% failure rate but more wasted energy. In such a case, the reduction of the latter should be a priority.
3. Incorporate specialized carbon-aware metrics
Cloud platforms such as AWS, Google Cloud, and Azure already provide native tools to report the carbon footprint of the resources used. For other environments, we can incorporate Carbon-Aware SDK to measure the carbon footprint by process, location, and time of the day. Such insights optimize the combination of the greenest energy sources, at the greenest location, and at the greenest time.
4. Eliminate redundant tasks
The prevalent approach for CI / CD automation relies on automated workflows triggered by certain input events. When a developer checks in a code change, it triggers a pipeline process to build, deploy and automatically test the change through multiple test environments. Oftentimes, the code changes are limited to a few files, but the build and test process triggers the compilation and testing of large monolithic components involving hundreds of unchanged files. DevOps teams should identify such redundancies and optimize the workflows to minimize wasteful computations.
5. Remove unused applications, and ROT data
It is quite common to find old unused applications running on servers or to find ROT (Redundant, Obsolete, and Trivial) data being stored on servers. DevOps teams can identify unused applications, delete redundant storage resources, and set retention policies to automatically delete obsolete data.
6. Optimize network traffic
When software components (services) communicate with other components (services) external to their deployment zones, it results in a higher carbon footprint due to increased consumption of data center resources. DevOps teams can ensure that storage and compute resources are deployed within the same availability zone or use edge-computing / fog-computing architecture patterns to reduce latency and network traffic.
7. Optimize utilization for servers and storage units
Low utilization levels of resource units imply wasted energy for unused resources. For example, two servers with 20% utilization will consume more electricity and have more carbon footprint than a single server with 40% utilization. However, a utilization level of 100% will diminish the ability to scale. DevOps teams can set up low and high watermark levels for server and storage utilization levels and periodically right-size the servers to maintain utilization levels between the low and high watermarks.
8. Carbon-aware scheduling of jobs
Computing resources have periods of peak demand and low demand. It is possible to delay the execution of some non-critical jobs so that the peak demand for computing resources evens out. Further, DevOps teams can use carbon-aware SDK (or a similar tool) to determine the best time and location to execute jobs to minimize the carbon footprint within a specified time window.
The goal of DevOps, which combines developers and operations, is to increase the pace, regularity, and dependability of software development, testing, release, and operations. With the integration of carbon-aware standards and green software principles, DevOps will be an important enabler for achieving organizational sustainability goals.
Industry News
Red Hat announced the general availability of Red Hat Enterprise Linux 9.5, the latest version of the enterprise Linux platform.
Securiti announced a new solution - Security for AI Copilots in SaaS apps.
Spectro Cloud completed a $75 million Series C funding round led by Growth Equity at Goldman Sachs Alternatives with participation from existing Spectro Cloud investors.
The Cloud Native Computing Foundation® (CNCF®), which builds sustainable ecosystems for cloud native software, has announced significant momentum around cloud native training and certifications with the addition of three new project-centric certifications and a series of new Platform Engineering-specific certifications:
Red Hat announced the latest version of Red Hat OpenShift AI, its artificial intelligence (AI) and machine learning (ML) platform built on Red Hat OpenShift that enables enterprises to create and deliver AI-enabled applications at scale across the hybrid cloud.
Salesforce announced agentic lifecycle management tools to automate Agentforce testing, prototype agents in secure Sandbox environments, and transparently manage usage at scale.
OpenText™ unveiled Cloud Editions (CE) 24.4, presenting a suite of transformative advancements in Business Cloud, AI, and Technology to empower the future of AI-driven knowledge work.
Red Hat announced new capabilities and enhancements for Red Hat Developer Hub, Red Hat’s enterprise-grade developer portal based on the Backstage project.
Pegasystems announced the availability of new AI-driven legacy discovery capabilities in Pega GenAI Blueprint™ to accelerate the daunting task of modernizing legacy systems that hold organizations back.
Tricentis launched enhanced cloud capabilities for its flagship solution, Tricentis Tosca, bringing enterprise-ready end-to-end test automation to the cloud.
Rafay Systems announced new platform advancements that help enterprises and GPU cloud providers deliver developer-friendly consumption workflows for GPU infrastructure.
Apiiro introduced Code-to-Runtime, a new capability using Apiiro’s deep code analysis (DCA) technology to map software architecture and trace all types of software components including APIs, open source software (OSS), and containers to code owners while enriching it with business impact.
Zesty announced the launch of Kompass, its automated Kubernetes optimization platform.
MacStadium announced the launch of Orka Engine, the latest addition to its Orka product line.