What Can AIOps Do For DevOps? - Part 2
October 26, 2021

DEVOPSdigest asked the top minds in the industry what they think AIOps can do for DevOps and developers. Part 2 covers AIOps capabilities such as observability and automation.

Start with What Can AIOps Do For DevOps? - Part 1

OBSERVABILITY

The security, identity, and privacy issues that come with the widespread use of the cloud as well as the scaling and resiliency needed for most web apps needs the toolset that AIOps promises in the form of automation. Incorporating automation is a must with the sprawling IT ecosystems of today. It will soon be impossible to have a bird's eye view of your entire ecosystem (if it isn't already). One practical use of automation comes in the form of observability which provides a way to proactively spot trends and issues enabling proactive management rather than reactive which is what we have with non-AI-enabled monitoring tools.
Rachel Roumeliotis
VP of AI and Data Content Strategy, O'Reilly Media(link is external)

ANOMALY DETECTION

DevOps teams are drowning in observability and monitoring data. DevOps teams can leverage AIOps technologies to analyze workload and environment behaviors to alert when anomalies are detected. This frees up time for DevOps teams to focus on delivering services to the business.
Thomas LaRock
Head Geek, SolarWinds(link is external)

EFFICIENT TROUBLESHOOTING

AIOps enables developers and DevOps engineers to be superhumans. It allows them to make sense of the massive amount of data that comes their way. It makes troubleshooting and pinpointing problems a lot more efficient.
Saro Subbiah
VP of Engineering and Technology for Monitor & Platform, Sysdig(link is external)

RESOLVE NEW FAILURE TYPES

AIOps is a tool that provides a force multiplier of the DevOps staff and reduces or removes mundane tasks, allowing the team to focus on complex or new failure types. New failure types should be processed by AIOps tools that can learn how the issue was resolved. This means the next time it can automate a response, or more quickly escalate to a person or team that can resolve it. This provides them with the best knowledge about what is happening now, allowing them to quickly focus on fixing the problem. The AIOps tool should be able to detect issues before humans can respond so that many events are never noticed by the end-user.
Michael Delzer
Analyst, Gigaom(link is external)

PREDICT ISSUES

As developers and enterprise IT teams are put under continued strain to manage complex infrastructure, AIOps helps developers to focus their efforts on problems that cannot be solved with siloed tools. The onset of COVID-19 has triggered a rapid adoption of new services to accommodate the move to remote work. This acceleration has also seen an increase across DevOps team tasked with monitoring applications for warnings and malfunctions. By utilizing advanced technology like machine learning, AIOps can better evaluate and alert of application warnings, eventually being able to predict the impact of threats.
Michael Procopio
Product Marketing Manager, Micro Focus(link is external)

FASTER RECOVERY

As companies prioritize customer experience and focus on their digital transformations, DevOps practices have emerged to streamline processes, remove inefficiencies, and reduce risks in software deployments. By proactively integrating AIOps within the DevOps infrastructure and tools already in place, businesses can monitor the entire life cycle of their software and predict issues before they even occur. This automated approach can result in faster recovery times across the board, from software bugs to cloud performance issues.
Eric Thiel
Director, Developer Experience, Cisco(link is external)

SELF-LEARNING

The single most important value add of AIOps for IT Operations teams is the self-learning capability. As networks become more complex and the applications they carry become more rich and varied, it is practically impossible for network administrators to set pre-defined boundaries for good or bad performance. This is where the fundamentals of AIOps capabilities such as baselining, dynamic thresholding, anomaly detection, paired with human-in-the-loop feedback enables self-learning behavior. Depending on the maturity of the ML/AI algorithms paired with accurate domain-specific interpretation of data, AIOps systems can truly become powerful self-learning systems that will only bubble up the most relevant events, thereby reducing noise and letting the IT Operations teams focus on real issues.
Vishwas Puttasubbappa
VP of Engineering, LiveAction(link is external)

AUTOMATION

DevOps teams want to operate quickly and efficiently. AIOps helps with this by allowing teams to easily set up AI-assisted automations on top of their data flows and reduce manual toil.
Mohan Kompella, VP Product Marketing,
Adam Blau, Director of Product Marketing,
Anirban Chatterjee, Director of Product Marketing, BigPanda(link is external)

AIOps enables teams to implement more automation, alleviating developers of repetitive and low-value tasks so they can focus on innovation.
Rod Cope
CTO, Perforce Software(link is external)

As AI enters the DevOps stack, it can perform the monotonous and repetitive tasks that keep employees from prioritizing knowledge work. Using patterns from deployment data, analytics, process insights, and more, enterprises can build scripts for hyperautomation. This allows the human team to focus on critical tasks, alarms, and potential failures, while empowering them to maintain the type of "high quality and high process compliance" culture that provides comfort to internal and external customers.
Virender Jeet
CEO, Newgen Software(link is external)

AUTOMATION THROUGH CI/CD

AIOps enables the developers to automate the process of product delivery through CI/CD, release management, production availability and resiliency.
Bhanu Singh
VP Product Development and Cloud Operations, OpsRamp(link is external)

With DevOps, organizations can achieve business agility and expedite go-to-market timelines by providing valuable updates to critical applications. However, DevOps is primarily focused on automating application delivery with CI/CD. Much of the application performance monitoring, and root cause analysis continue to be a manually intensive process where DevOps still has to collect data from multiple sources such as logs, metrics, events etc. AIOps provide insights to DevOps by automating data collection and inferences that help decrease mean time to recovery (MTTR). Additionally, AIOps provide predictive analytics that could ease much of the capacity planning and cost saving driving faster and sound decision making.
Deepak Goel
CTO, D2iQ(link is external)

DOING MORE WITH LESS RESOURCES

The insights AIOps gives to DevOps teams enables them to glean more clarity with less effort by automatically analyzing their environment to uncover noteworthy trends that may otherwise have been missed. This allows engineers to work across previously siloed lines and to conduct investigations more efficiently, even if they involve unfamiliar parts of the system, such as those managed by other teams. As a result, small teams can feel like they have the resources of a big team, and big teams can communicate with the efficiency of a small team. The advantage, then, is multiplying the impact of an organization's engineering resources, so they can do more with less.
Renaud Boutet
SVP of Product, Datadog(link is external)

The greatest benefit that AIOps delivers to DevOps teams is the scalability of the "You Build it You Own it" (YBYO) model. Even at the lowest maturity levels of AIOps through automated incident detection, alerting and response coupled with ChatOps and on-call management provides immediate relief from the burden of staffing a 24/7 watch/op-center. At higher maturity levels, automated self-healing, outage prediction/automated failover, and automated cost vs. performance optimization provide even greater reduction of the cognitive load of successful teams. This not only allows teams to focus more on the user experience, quality, and security of the solutions they develop and operate but creates the opportunity for better work life balance, increased collaboration and inter-sourcing between teams, and ultimately is the key to sustained success at scale.
Bob Ritchie
VP of Software, SAIC(link is external)

HELP SMALL TEAMS

DevOps teams or developers have a lot of jobs and one of these is keeping systems up and running. Vendor solutions that surface anomalies are helpful but often create too much noise. Vendors who can save engineering time when troubleshooting an issue are critical. If you can shortcut steps by either referencing useful information in context or suggest what a user might end up doing these approaches really help small teams who wear many hats. This lets engineers get back to work quickly, which should be all of our goals in the vendor world.
Jonah Kowall
CTO, Logz.io(link is external)

Go to: What Can AIOps Do For DevOps? - Part 3

Share this

Industry News

April 17, 2025

GitLab announced the general availability of GitLab Duo with Amazon Q.

April 17, 2025

Perforce Software and Liquibase announced a strategic partnership to enhance secure and compliant database change management for DevOps teams.

April 17, 2025

Spacelift announced the launch of Saturnhead AI — an enterprise-grade AI assistant that slashes DevOps troubleshooting time by transforming complex infrastructure logs into clear, actionable explanations.

April 16, 2025

CodeSecure and FOSSA announced a strategic partnership and native product integration that enables organizations to eliminate security blindspots associated with both third party and open source code.

April 16, 2025

Bauplan, a Python-first serverless data platform that transforms complex infrastructure processes into a few lines of code over data lakes, announced its launch with $7.5 million in seed funding.

April 15, 2025

Perforce Software announced the launch of the Kafka Service Bundle, a new offering that provides enterprises with managed open source Apache Kafka at a fraction of the cost of traditional managed providers.

April 14, 2025

LambdaTest announced the launch of the HyperExecute MCP Server, an enhancement to its AI-native test orchestration platform, HyperExecute.

April 14, 2025

Cloudflare announced Workers VPC and Workers VPC Private Link, new solutions that enable developers to build secure, global cross-cloud applications on Cloudflare Workers.

April 14, 2025

Nutrient announced a significant expansion of its cloud-based services, as well as a series of updates to its SDK products, aimed at enhancing the developer experience by allowing developers to build, scale, and innovate with less friction.

April 10, 2025

Check Point® Software Technologies Ltd.(link is external) announced that its Infinity Platform has been named the top-ranked AI-powered cyber security platform in the 2025 Miercom Assessment.

April 10, 2025

Orca Security announced the Orca Bitbucket App, a cloud-native seamless integration for scanning Bitbucket Repositories.

April 10, 2025

The Live API for Gemini models is now in Preview, enabling developers to start building and testing more robust, scalable applications with significantly higher rate limits.

April 09, 2025

Backslash Security(link is external) announced significant adoption of the Backslash App Graph, the industry’s first dynamic digital twin for application code.

April 09, 2025

SmartBear launched API Hub for Test, a new capability within the company’s API Hub, powered by Swagger.

April 09, 2025

Akamai Technologies introduced App & API Protector Hybrid.