AI-Powered DevOps: Best Practices for Business Adoption
October 17, 2024

Jori Ramakers
Tricentis

Global adoption of artificial intelligence (AI) has skyrocketed, with 72% of companies incorporating the technology. IT teams have been leading this transformation, using AI to not only solve problems, but to accelerate innovation. And with the global AI market expected to reach $184 billion by the year's end, businesses that embrace this shift will be the ones defining the future.

As part of this shift, we've seen AI technologies become a powerful asset for DevOps teams. Organizations are under pressure to ramp up their software delivery cycles toward faster, more efficient, releases. And those using this technology are reaping its impact. In a recent AI-augmented DevOps trends report we conducted, we found that DevOps teams leveraging AI are 30% more likely to rate their performance as either extremely or very effective.

It is evident that AI is already addressing key challenges experienced by DevOps teams. From improving productivity and closing skills gaps to cutting costs and refining software quality. Furthermore, AI copilots are gaining traction, offering valuable support in planning, code development, and software testing. The potential of AI is no secret, but implementing this technology is easier said than done. To ensure successful AI adoption, it is vital to equip development and testing teams with the necessary skills to collaborate with AI systems effectively.


Empowering DevOps with AI

Testing stands out as the area yielding the highest ROI from AI within the software development lifecycle (SDLC), with almost two-thirds (60%) of DevOps practitioners highlighting it to us as the most valuable investment. AI is employed to enhance a variety of testing activities, from creating testing plans and generating test cases to analyzing outcomes and assessing the risks of code changes. This approach allows quality assurance (QA) teams to prioritize the most error-prone areas, focusing their efforts where it matters most.

AI has notably impacted both coding and security, with DevOps practitioners ranking these areas just behind testing. In security, AI tools are proving highly effective at proactively identifying and addressing vulnerabilities, boosting threat detection capabilities, and automating responses to emerging risks. Nonetheless, significant potential for AI remains in phases such as release management, deployment, platform engineering, and planning. These stages, which are crucial for ensuring software stability and scalability, could greatly benefit from AI's predictive abilities, resource optimization, and the streamlining of operational and maintenance processes.

Propelling AI Integration: Expertise and Confidence as Key Drivers

While generative AI and AI copilots have been instrumental in driving adoption of this technology, there remains a major shortage of AI expertise within DevOps. This gap is significant, especially given that humans remain deeply involved in the process, with over two-thirds of our respondents indicating they manually review AI-generated outputs at least half the time.

To address these challenges, organizations should devise specialized training courses to properly equip their DevOps teams with the skills to leverage AI tools. Whether through industry-recognized courses or internal programs, encouraging certification can enhance technical expertise significantly.

Upskilling is also essential, as AI requires human oversight for strategic decision-making, particularly in areas where contextual understanding is key. Additionally, establishing clear governance frameworks is critical to building trust and confidence in AI's contribution to software development. Balancing these factors will ensure AI becomes a valuable asset, driving efficiency while maintaining accountability.

American government officials have begun developing AI guidance, such as the White House's AI Bill of Rights blueprint, which envisions a national framework focused on safeguarding privacy, transparency, and fairness in AI applications. Overlapping state and federal laws create a complex regulatory landscape. Organizations that keep pace with both guidelines can ensure their AI systems are ethical, compliant, and trusted by their employees and the public.

Fueling Sustainable Team Growth for Lasting Impact

Organizations have tremendous potential to enhance DevOps practices through AI integration. However, as I mentioned earlier, successful AI adoption is only possible when development and testing teams are equipped with the skills needed in order to collaborate effectively with AI systems. Establishing trust in AI outputs will also require transparent governance and regulations, helping build confidence in the technology's capabilities.

Teams investing in upskilling and fostering trust in AI will be well-prepared to balance AI generation with human oversight. This approach ensures they can leverage AI as a powerful tool to boost efficiency, speed up time to market, and uphold high software quality standards.

Jori Ramakers is Senior Director of Customer Experience Strategy at Tricentis
Share this

Industry News

December 19, 2024

Check Point® Software Technologies Ltd. has been recognized as a Leader in the 2024 Gartner® Magic Quadrant™ for Email Security Platforms (ESP).

December 19, 2024

Progress announced its partnership with the American Institute of CPAs (AICPA), the world’s largest member association representing the CPA profession.

December 18, 2024

Kurrent announced $12 million in funding, its rebrand from Event Store and the official launch of Kurrent Enterprise Edition, now commercially available.

December 18, 2024

Blitzy announced the launch of the Blitzy Platform, a category-defining agentic platform that accelerates software development for enterprises by autonomously batch building up to 80% of software applications.

December 17, 2024

Sonata Software launched IntellQA, a Harmoni.AI powered testing automation and acceleration platform designed to transform software delivery for global enterprises.

December 17, 2024

Sonar signed a definitive agreement to acquire Tidelift, a provider of software supply chain security solutions that help organizations manage the risk of open source software.

December 17, 2024

Kindo formally launched its channel partner program.

December 16, 2024

Red Hat announced the latest release of Red Hat Enterprise Linux AI (RHEL AI), Red Hat’s foundation model platform for more seamlessly developing, testing and running generative artificial intelligence (gen AI) models for enterprise applications.

December 16, 2024

Fastly announced the general availability of Fastly AI Accelerator.

December 12, 2024

Amazon Web Services (AWS) announced the launch and general availability of Amazon Q Developer plugins for Datadog and Wiz in the AWS Management Console.

December 12, 2024

vFunction released new capabilities that solve a major microservices headache for development teams – keeping documentation current as systems evolve – and make it simpler to manage and remediate tech debt.

December 11, 2024

CyberArk announced the launch of FuzzyAI, an open-source framework that helps organizations identify and address AI model vulnerabilities, like guardrail bypassing and harmful output generation, in cloud-hosted and in-house AI models.

December 11, 2024

Grid Dynamics announced the launch of its developer portal.

December 10, 2024

LTIMindtree announced a strategic partnership with GitHub.