Where Are We in the Evolution to Software 2.0?
April 09, 2020

Glenn Gruber
Anexinet

A recent MIT/BCG study revealed that 84% surveyed feel AI is critical to obtain or sustain competitive advantage, and three out of four surveyed believe that Machine Learning provides an opportunity to enter new businesses and that AI will be the basis for new entrants into their industry. Which shouldn't come as a surprise to anyone, seeing as how advances in GPU/TPU technology, and the development of new platforms and frameworks have enabled an explosion in AI and Machine Learning, while new platforms from Amazon, Microsoft and others have put pre-built frameworks firmly in the grasp of developers. Despite all this movement, however, we are still definitely very early in the transition to using AI to transform software development — commonly referred to as Software 2.0, or AIOps. 

Tesla is one shining example that emphasizes how early we are, and just how much expertise is required in an organization in order for the enterprise to gain the level of maturity necessary to take on this advanced, yet still esoteric, technology. Tesla uses computer vision, and other Machine Learning algorithms, to enable their vehicles to make literally thousands of decisions a millisecond. Most companies don't have anywhere near the comparable expertise in Artificial Intelligence and/or Machine Learning to take on this level of complexity on their own. But we remain optimistic, since Tesla's success thus far does inform what's possible in the near future.
 
The difficulty inherent in the transformation of DevOps to AIOps is that the two methodologies are not even close to being the same thing. Algorithmia, a company intent on "building the future of Machine Learning infrastructure," is one other organization that has already developed a flagship DevOps platform for AI. This tweet from Diego Oppenheimer, CEO/founder of Algorithmia, (quoting Mike Anderson, also of Algorithmia) illustrates what I mean when I say DevOps and AIOps are not one and the same: "Expecting your engineering and DevOps teams to deploy ML models well is like showing up to Seaworld with a giraffe, since they are already handling large mammals."
 
The low-code Lego models may be faster, but that doesn't mean they are optimized or efficient when you piece all the Legos together into a full-blown application. Though over time it's possible these components will improve. Some of the advantages of this approach can also be achieved (but perhaps without the continuous improvement of evaluating the quality of the code) through Reusable Component Libraries.
 
Many companies that may be eager to start down on the AI path will necessarily be relying on those familiar platform providers that are immediately available to them to improve/optimize code — such as the Microsoft Intellicode. We've also seen Apple launch SwiftUI, CreateML, and Reality Composer — all products aimed at reducing the coding effort as well as a significant investment in Swift (a far more efficient and declarative syntax that intrinsically requires less code) and the underlying ML and AR frameworks to pull it off. But like the Microsoft example, this is being led by the platform providers.

Glenn Gruber is a Senior Digital Strategist at Anexinet
Share this

Industry News

December 19, 2024

Check Point® Software Technologies Ltd. has been recognized as a Leader in the 2024 Gartner® Magic Quadrant™ for Email Security Platforms (ESP).

December 19, 2024

Progress announced its partnership with the American Institute of CPAs (AICPA), the world’s largest member association representing the CPA profession.

December 18, 2024

Kurrent announced $12 million in funding, its rebrand from Event Store and the official launch of Kurrent Enterprise Edition, now commercially available.

December 18, 2024

Blitzy announced the launch of the Blitzy Platform, a category-defining agentic platform that accelerates software development for enterprises by autonomously batch building up to 80% of software applications.

December 17, 2024

Sonata Software launched IntellQA, a Harmoni.AI powered testing automation and acceleration platform designed to transform software delivery for global enterprises.

December 17, 2024

Sonar signed a definitive agreement to acquire Tidelift, a provider of software supply chain security solutions that help organizations manage the risk of open source software.

December 17, 2024

Kindo formally launched its channel partner program.

December 16, 2024

Red Hat announced the latest release of Red Hat Enterprise Linux AI (RHEL AI), Red Hat’s foundation model platform for more seamlessly developing, testing and running generative artificial intelligence (gen AI) models for enterprise applications.

December 16, 2024

Fastly announced the general availability of Fastly AI Accelerator.

December 12, 2024

Amazon Web Services (AWS) announced the launch and general availability of Amazon Q Developer plugins for Datadog and Wiz in the AWS Management Console.

December 12, 2024

vFunction released new capabilities that solve a major microservices headache for development teams – keeping documentation current as systems evolve – and make it simpler to manage and remediate tech debt.

December 11, 2024

CyberArk announced the launch of FuzzyAI, an open-source framework that helps organizations identify and address AI model vulnerabilities, like guardrail bypassing and harmful output generation, in cloud-hosted and in-house AI models.

December 11, 2024

Grid Dynamics announced the launch of its developer portal.

December 10, 2024

LTIMindtree announced a strategic partnership with GitHub.