The Future of Quality Assurance: Key Insights
February 27, 2024

Salman Khan
LambdaTest

Software development is on the rise, and so are the expectations around its quality. When it comes to ensuring quality, there are various quality assurance (QA) techniques. As a tester, you can leverage different QA strategies, such as prioritizing and optimizing QA processes through CI/CD adoption, test orchestration, AI-based tooling, and more. Also, addressing issues such as flaky tests and increasing observability will result in more efficient and effective quality assurance practices.

The Future of Quality Assurance survey from LambdaTest suggests that almost 78% of software testers have already adopted AI-driven tools to optimize their test process.

Adoption of AI in Test Automation

The rise of AI in test automation is very interesting! With 77.7% of organizations focusing on data creation, log analysis, and even test case generation, it's clear the potential is massive. But there are challenges too.

The biggest concerns? Reliability (60.3%) and skill gaps (54.4%). We need AI tools to be transparent and explainable, building trust with testers. And upskilling is crucial to bridge the knowledge gap and empower them to wield this new power effectively.


Click on chart above for larger image

The key lies in collaboration. AI developers must prioritize user-friendly interfaces and clear explanations. Industry leaders, training providers, and communities need to join forces to create accessible learning materials. And organizations should start small, scaling iteratively as they gain confidence.

It’s important to note that AI should augment, not replace, human expertise and ethical considerations, and human-AI collaboration is important. By working together, testers can leverage the true potential of AI to revolutionize test automation and deliver exceptional software quality.

Bandwidth of QA Teams

As per the survey, QA teams spend nearly 18% of their time setting up test environments and running flaky tests, which is a major bottleneck. However, in this case, the right tools can be game changers to detect flaky tests and perform root cause analysis to address unreliable tests. This translates into faster testing, improved collaboration, and lower costs.


Click on chart above for larger image

So, it is important to choose the right tools for your needs and strategically implement them to reap the benefits.

Culture of Testing

More than 70% of organizations include testers in sprint planning, but smaller teams fall behind. The difference is likely the result of limited resources and communication barriers.


Click on chart above for larger image

To bridge these gaps, emphasize the importance of testing, encourage shared ownership through cross-training, implement easy-to-use tools, and create effective communication channels. This will also help small teams reap the benefits of tester participation in sprint planning.

Adoption of CI/CD Processes

While 89.1% of teams have implemented CI/CD tools in their test process to speed up releases, 45% still run automated tests manually. It shows a gap between CI/CD adoption and its usage. This may be attributed to a different understanding, insufficient training, advanced tools that need a learning curve, or challenges with integration.


Click on chart above for larger image

To close this gap, organizations can increase awareness, drive cultural change, optimize techniques, and fix specific issues, ultimately realizing the full potential of CI/CD for faster delivery, higher quality, and low risks.

Test Intelligence and Analytics Gap

Around 30% of organizations need dedicated test intelligence infrastructure. It results in reactive testing and not-so-smooth resource allocation to measure testing effectiveness.

So, a viable option here is to invest in dedicated tools, making the most of your platforms, adopting structured reporting, and fostering a data-driven culture. This will help you not only optimize your testing processes but also deliver higher-quality software faster.


Click on chart above for larger image

Challenges in Prioritizing Tests

While the stats are promising, with 77.7% of organizations embracing AI/ML in test automation, challenges remain there due to reliability concerns (60.3%), and skill gaps (54.4%). Addressing these through user-friendly tools, comprehensive training, and iterative adoption is critical.

The future is bright, but ethical considerations and the importance of human-AI collaboration must be addressed.


Click on chart above for larger image

Closing Thoughts

While AI in test data creation, test analysis, and test cases shows promise for 77.7% of organizations, reliability concerns (60.3%) and skill gaps (54.4%) remain key hurdles. Testers can address these with user-friendly AI tools, training, and iterative adoption.

Remember, AI augments but does not replace human expertise. It is important to prioritize and optimize testing through CI/CD, test orchestration, and AI tools, addressing flaky tests for faster, more efficient processes. Side-by-side, foster a testing culture with tester inclusion in sprint planning, especially in smaller teams, and provide easy-to-use tools for better communication and collaboration.

Developers and testers can bridge the CI/CD gap with cultural change, technique optimization, and addressing integration challenges to unlock its full potential. Additionally, invest in dedicated test intelligence tools and leverage existing platforms, adopting structured reporting and a data-driven culture for optimized testing and faster, high-quality software delivery.

The future of QA is not just about tools but collaboration, continuous learning, and a shared commitment to excellence. By focusing on these key areas, QA professionals can harness technology, empower people, and deliver exceptional software quality in the future.

Salman Khan is Asst. Digital Marketing Manager at LambdaTest
Share this

Industry News

November 20, 2024

Spectro Cloud completed a $75 million Series C funding round led by Growth Equity at Goldman Sachs Alternatives with participation from existing Spectro Cloud investors.

November 20, 2024

The Cloud Native Computing Foundation® (CNCF®), which builds sustainable ecosystems for cloud native software, has announced significant momentum around cloud native training and certifications with the addition of three new project-centric certifications and a series of new Platform Engineering-specific certifications:

November 20, 2024

Red Hat announced the latest version of Red Hat OpenShift AI, its artificial intelligence (AI) and machine learning (ML) platform built on Red Hat OpenShift that enables enterprises to create and deliver AI-enabled applications at scale across the hybrid cloud.

November 20, 2024

Salesforce announced agentic lifecycle management tools to automate Agentforce testing, prototype agents in secure Sandbox environments, and transparently manage usage at scale.

November 19, 2024

OpenText™ unveiled Cloud Editions (CE) 24.4, presenting a suite of transformative advancements in Business Cloud, AI, and Technology to empower the future of AI-driven knowledge work.

November 19, 2024

Red Hat announced new capabilities and enhancements for Red Hat Developer Hub, Red Hat’s enterprise-grade developer portal based on the Backstage project.

November 19, 2024

Pegasystems announced the availability of new AI-driven legacy discovery capabilities in Pega GenAI Blueprint™ to accelerate the daunting task of modernizing legacy systems that hold organizations back.

November 19, 2024

Tricentis launched enhanced cloud capabilities for its flagship solution, Tricentis Tosca, bringing enterprise-ready end-to-end test automation to the cloud.

November 19, 2024

Rafay Systems announced new platform advancements that help enterprises and GPU cloud providers deliver developer-friendly consumption workflows for GPU infrastructure.

November 19, 2024

Apiiro introduced Code-to-Runtime, a new capability using Apiiro’s deep code analysis (DCA) technology to map software architecture and trace all types of software components including APIs, open source software (OSS), and containers to code owners while enriching it with business impact.

November 19, 2024

Zesty announced the launch of Kompass, its automated Kubernetes optimization platform.

November 18, 2024

MacStadium announced the launch of Orka Engine, the latest addition to its Orka product line.

November 18, 2024

Elastic announced its AI ecosystem to help enterprise developers accelerate building and deploying their Retrieval Augmented Generation (RAG) applications.

Read the full news on APMdigest

November 18, 2024

Red Hat introduced new capabilities and enhancements for Red Hat OpenShift, a hybrid cloud application platform powered by Kubernetes, as well as the technology preview of Red Hat OpenShift Lightspeed.

November 18, 2024

Traefik Labs announced API Sandbox as a Service to streamline and accelerate mock API development, and Traefik Proxy v3.2.