Progress announced new powerful capabilities and enhancements in the latest release of Progress® Sitefinity®.
SnapLogic announced SnapLogic Data Science, a new self-service solution to accelerate the development and deployment of machine learning with minimal coding.
By bridging the data science skills gap and automating the machine learning lifecycle, SnapLogic Data Science makes end-to-end machine learning accessible to enterprises of all sizes.
Through SnapLogic’s drag-and-drop interface, data engineers, data scientists, and IT/DevOps teams can use SnapLogic Data Science to manage and control the entire machine learning lifecycle – including data acquisition, data exploration and preparation, model training and validation, and model deployment – all from within the SnapLogic integration platform. SnapLogic Data Science breaks down traditional barriers that can undermine machine learning initiatives by providing a common platform for machine learning visibility and collaboration across teams including data engineering, data science, IT, DevOps, and development.
“Every enterprise in every industry will need to employ AI and machine learning in order to keep pace with today’s most progressive businesses. However, most companies fall flat in actualizing machine learning because they don’t have the talent or financial resources to make the most of their data,” said Greg Benson, Chief Scientist at SnapLogic. “With SnapLogic Data Science, we’re enabling our customers to overcome the common barriers associated with putting machine learning into practice by arming them with a full stack of self-service tools to be faster, more agile, more data-driven. Just as we enabled self-service application and data integration for IT and citizen integrators, we are extending these self-service capabilities to data engineers and data science teams who need to build and deploy machine learning models faster and easier.”
SnapLogic Data Science provides enterprises with self-service tools to rapidly build and deploy machine learning models from beginning to end. By democratizing end-to-end data science, organizations can achieve higher productivity through accelerated machine learning development following a visual, drag-and-drop interface. Enterprises also achieve a lower total cost of ownership as they are now able to decrease their production deployment time from days to hours, natively within the SnapLogic integration platform.
With SnapLogic Data Science, organizations can:
- Access and assemble the data for use by machine learning models
- Perform preparatory operations on data sets such as data type transformation, data cleanup, sampling, shuffling, and scaling
- Create, cross-validate, and deploy machine learning models. Additionally, users can also execute Python scripts remotely to leverage libraries such as TensorFlow and Keras
- Perform analytic operations such as data profiling and data type inspection
- Eliminate redundancy in data preparation introduced through the disconnect between data engineering, data science, and IT/DevOps teams
- Operationalize machine learning models built using SnapLogic’s new Machine Learning Snaps or Jupyter Notebooks with the Native Python Snap
- Deploy machine learning pipelines as Ultra Tasks to receive and reply to machine learning API requests
- Provide continuous model building to adapt to new data and activity
SnapLogic Data Science is available now.
Industry News
Red Hat announced the general availability of Red Hat Enterprise Linux 9.5, the latest version of the enterprise Linux platform.
Securiti announced a new solution - Security for AI Copilots in SaaS apps.
Spectro Cloud completed a $75 million Series C funding round led by Growth Equity at Goldman Sachs Alternatives with participation from existing Spectro Cloud investors.
The Cloud Native Computing Foundation® (CNCF®), which builds sustainable ecosystems for cloud native software, has announced significant momentum around cloud native training and certifications with the addition of three new project-centric certifications and a series of new Platform Engineering-specific certifications:
Red Hat announced the latest version of Red Hat OpenShift AI, its artificial intelligence (AI) and machine learning (ML) platform built on Red Hat OpenShift that enables enterprises to create and deliver AI-enabled applications at scale across the hybrid cloud.
Salesforce announced agentic lifecycle management tools to automate Agentforce testing, prototype agents in secure Sandbox environments, and transparently manage usage at scale.
OpenText™ unveiled Cloud Editions (CE) 24.4, presenting a suite of transformative advancements in Business Cloud, AI, and Technology to empower the future of AI-driven knowledge work.
Red Hat announced new capabilities and enhancements for Red Hat Developer Hub, Red Hat’s enterprise-grade developer portal based on the Backstage project.
Pegasystems announced the availability of new AI-driven legacy discovery capabilities in Pega GenAI Blueprint™ to accelerate the daunting task of modernizing legacy systems that hold organizations back.
Tricentis launched enhanced cloud capabilities for its flagship solution, Tricentis Tosca, bringing enterprise-ready end-to-end test automation to the cloud.
Rafay Systems announced new platform advancements that help enterprises and GPU cloud providers deliver developer-friendly consumption workflows for GPU infrastructure.
Apiiro introduced Code-to-Runtime, a new capability using Apiiro’s deep code analysis (DCA) technology to map software architecture and trace all types of software components including APIs, open source software (OSS), and containers to code owners while enriching it with business impact.
Zesty announced the launch of Kompass, its automated Kubernetes optimization platform.
MacStadium announced the launch of Orka Engine, the latest addition to its Orka product line.