Security and the Twelve-Factor App - Step 7
A blog series by WhiteHat Security
April 08, 2019

Eric Sheridan
WhiteHat Security

The previous blog in this WhiteHat Security series recommended executing the app as one or more stateless processes by using small programs that communicate over the network. From a security standpoint it’s key to always assume that all process inputs are controlled by hackers, and create one or more processes that are dedicated exclusively to security services.

Start with Security and the Twelve-Factor App - Step 1

Start with Security and the Twelve-Factor App - Step 2

Start with Security and the Twelve-Factor App - Step 3

Start with Security and the Twelve-Factor App - Step 4

Start with Security and the Twelve-Factor App - Step 5

Start with Security and the Twelve-Factor App - Step 6

Step 7 of the Twelve-Factor App focuses on exporting services via port binding, and what to apply from a security point of view. Here is some actionable security-focused advice which developers and ops engineers can follow during the SaaS build and operations stages.

Defining Port Binding in the Twelve-Factor App

In this seventh step, the Twelve-Factor methodology encourages the integration of the network handling traffic code inside your running application. To explain, web apps are sometimes executed inside a web server container. For example, PHP apps might run as a module inside Apache HTTPD, or Java apps might run inside Tomcat.

The twelve-factor app is completely self-contained and does not rely on runtime injection of a webserver into the execution environment to create a web-facing service. The web app exports HTTP as a service by binding to a port, and listening to requests coming in on that port.

The challenge is that these modules must still be configured, which can lead to security risks if an app is bound to privileged ports or protected with poor passwords.

Applying Security to Step 6

To elevate security risks, bind your app to an unprivileged port and make use of port forwarding facilities. Unprivileged ports are any port number greater than 1024. Binding to a port above 1024 will not require system or root level privileges, thus allowing your app to run with least privilege. Port forwarding can then be used to transfer production traffic from a well-known privileged port, such as port 443, to a non-privileged port being used by your app. This can be achieved at the operating system level, often using firewall configurations. For example, the IP Tables firewall is commonly used to achieve port forwarding on Linux operating systems.

In the next blog we’ll chat through Step 8, which recommends scaling out via the process model, and two simple processes that can be incorporated to enhance security.

Read Security and the Twelve-Factor App - Step 8

Eric Sheridan is Chief Scientist at WhiteHat Security
Share this

Industry News

November 21, 2024

Red Hat announced the general availability of Red Hat Enterprise Linux 9.5, the latest version of the enterprise Linux platform.

November 21, 2024

Securiti announced a new solution - Security for AI Copilots in SaaS apps.

November 20, 2024

Spectro Cloud completed a $75 million Series C funding round led by Growth Equity at Goldman Sachs Alternatives with participation from existing Spectro Cloud investors.

November 20, 2024

The Cloud Native Computing Foundation® (CNCF®), which builds sustainable ecosystems for cloud native software, has announced significant momentum around cloud native training and certifications with the addition of three new project-centric certifications and a series of new Platform Engineering-specific certifications:

November 20, 2024

Red Hat announced the latest version of Red Hat OpenShift AI, its artificial intelligence (AI) and machine learning (ML) platform built on Red Hat OpenShift that enables enterprises to create and deliver AI-enabled applications at scale across the hybrid cloud.

November 20, 2024

Salesforce announced agentic lifecycle management tools to automate Agentforce testing, prototype agents in secure Sandbox environments, and transparently manage usage at scale.

November 19, 2024

OpenText™ unveiled Cloud Editions (CE) 24.4, presenting a suite of transformative advancements in Business Cloud, AI, and Technology to empower the future of AI-driven knowledge work.

November 19, 2024

Red Hat announced new capabilities and enhancements for Red Hat Developer Hub, Red Hat’s enterprise-grade developer portal based on the Backstage project.

November 19, 2024

Pegasystems announced the availability of new AI-driven legacy discovery capabilities in Pega GenAI Blueprint™ to accelerate the daunting task of modernizing legacy systems that hold organizations back.

November 19, 2024

Tricentis launched enhanced cloud capabilities for its flagship solution, Tricentis Tosca, bringing enterprise-ready end-to-end test automation to the cloud.

November 19, 2024

Rafay Systems announced new platform advancements that help enterprises and GPU cloud providers deliver developer-friendly consumption workflows for GPU infrastructure.

November 19, 2024

Apiiro introduced Code-to-Runtime, a new capability using Apiiro’s deep code analysis (DCA) technology to map software architecture and trace all types of software components including APIs, open source software (OSS), and containers to code owners while enriching it with business impact.

November 19, 2024

Zesty announced the launch of Kompass, its automated Kubernetes optimization platform.

November 18, 2024

MacStadium announced the launch of Orka Engine, the latest addition to its Orka product line.