Spectro Cloud completed a $75 million Series C funding round led by Growth Equity at Goldman Sachs Alternatives with participation from existing Spectro Cloud investors.
Generative AI (GenAI) is a clear priority for organizations — a survey conducted by Couchbase of 500 IT decision makers found that almost all respondents have specific goals to use it in 2024. As organizations prepare for GenAI's rapid growth, they are facing critical questions:
Can their data infrastructure and application architectures handle it?
And how can developers use GenAI to build and improve applications that give users the adaptive, personalized experiences they expect?
Developers are under immense pressure to ship innovations quickly. Yet, they often lack the necessary resources to bring their ideas to life. A modern data management strategy is important — one that not only addresses the challenges posed by AI but empowers developer teams to create leading products and applications.
To address these challenges, organizations are increasing investment in digital modernization. According to the survey, investment in digital modernization is expected to increase by 27% from $28 million in 2023 to $35.5 million per enterprise this year.
Organizations Are Unprepared for GenAI Data Demands
Legacy technology isn't built to support many of the intricacies of GenAI. Developers will struggle to meet customer demands and modernization goals if they don't have the right infrastructure and tools in place. Four in ten (42%) organizations cited the reliance on legacy technology as an issue preventing them from pursuing new projects. Overall, a majority of IT decision makers are worried their organizations' ability to manage data will not meet GenAI demands without significant investment.
The survey found a surprising number of enterprises lack numerous capabilities that enable organizations to modernize, which could lead to them falling behind competitively, unable to deliver applications that customers want:
■ Only 46% of enterprises have complete control over data storage, access and usage.
■ Nearly 7 in ten (69%) enterprises do not have a consolidated database architecture, increasing the risk of applications reading or writing duplicate copies of data and fragmenting the ability to gather data for RAG use cases.
■ Only 25% of enterprises have a high-performance database that can manage unstructured data.
■ Most enterprises (82%) do not yet have a vector database that can store, manage and index vector data efficiently.
■ 60% of IT decision makers are worried about ensuring their organization has sufficient compute power and data center infrastructure to support GenAI.
The Impact of IT Shortcomings on Developers
GenAI tools have the power to increase developer productivity, help them stay up to date and enable more testing and iterating of code to create applications more quickly. However, every organization (100%) said their development team encountered issues when using GenAI tools to support their work creating new applications. Without the right tools to manage GenAI safely and effectively, developers could lose out on an opportunity to do more with less.
Current IT infrastructures that cannot support GenAI applications running in-house are already costing organizations an average of $4 million dollars per year due to failed, delayed, or scaled-back projects. Every single enterprise cited they have been prevented from pursuing a new digital service or other IT modernization project because of issues with technology, resources or organizational buy-in.
Additionally, a concerning 63% of organizations have suffered delays longer than three months because of IT modernization issues. These challenges emphasize the need for a data strategy that delivers more flexible computing power (i.e., edge computing), high-speed access to data and the ability to query it in real time, control over data storage and a consolidated database architecture. Developers will require a significant investment in such tools to successfully deliver applications and products that customers desire.
Harnessing AI for Productivity
AI's ability to support accurate, intelligent automation can address productivity challenges for developers and end users alike. AI-powered coding tools can accelerate the development process, which could be a reason 93% of enterprises are investing in GenAI. Plus, 73% of enterprises are increasing investment in AI tools to help developers work more effectively and bring GenAI to their applications.
Embracing Multipurpose Databases for GenAI Success
As GenAI demands continue to soar, organizations should recognize the critical role of a modern multipurpose database in creating and supporting AI applications. A multipurpose database can offer data access flexibility, vector search, edge computing capabilities, scalability and real-time analytics support, giving enterprises a significant advantage in their GenAI ambitions. By applying data management strategies to enable high-speed data analytics and processing capabilities required for AI, organizations will be well-positioned to benefit from GenAI's full potential.
Industry News
The Cloud Native Computing Foundation® (CNCF®), which builds sustainable ecosystems for cloud native software, has announced significant momentum around cloud native training and certifications with the addition of three new project-centric certifications and a series of new Platform Engineering-specific certifications:
Red Hat announced the latest version of Red Hat OpenShift AI, its artificial intelligence (AI) and machine learning (ML) platform built on Red Hat OpenShift that enables enterprises to create and deliver AI-enabled applications at scale across the hybrid cloud.
Salesforce announced agentic lifecycle management tools to automate Agentforce testing, prototype agents in secure Sandbox environments, and transparently manage usage at scale.
OpenText™ unveiled Cloud Editions (CE) 24.4, presenting a suite of transformative advancements in Business Cloud, AI, and Technology to empower the future of AI-driven knowledge work.
Red Hat announced new capabilities and enhancements for Red Hat Developer Hub, Red Hat’s enterprise-grade developer portal based on the Backstage project.
Pegasystems announced the availability of new AI-driven legacy discovery capabilities in Pega GenAI Blueprint™ to accelerate the daunting task of modernizing legacy systems that hold organizations back.
Tricentis launched enhanced cloud capabilities for its flagship solution, Tricentis Tosca, bringing enterprise-ready end-to-end test automation to the cloud.
Rafay Systems announced new platform advancements that help enterprises and GPU cloud providers deliver developer-friendly consumption workflows for GPU infrastructure.
Apiiro introduced Code-to-Runtime, a new capability using Apiiro’s deep code analysis (DCA) technology to map software architecture and trace all types of software components including APIs, open source software (OSS), and containers to code owners while enriching it with business impact.
Zesty announced the launch of Kompass, its automated Kubernetes optimization platform.
MacStadium announced the launch of Orka Engine, the latest addition to its Orka product line.
Elastic announced its AI ecosystem to help enterprise developers accelerate building and deploying their Retrieval Augmented Generation (RAG) applications.
Red Hat introduced new capabilities and enhancements for Red Hat OpenShift, a hybrid cloud application platform powered by Kubernetes, as well as the technology preview of Red Hat OpenShift Lightspeed.
Traefik Labs announced API Sandbox as a Service to streamline and accelerate mock API development, and Traefik Proxy v3.2.