Navigating the Complexities of Operating Large-Scale Kubernetes Environments - 2
July 14, 2022

Sayandeb Saha
NetApp

As containers become the default choice for developing and distributing modern applications and Kubernetes (k8s) the de-facto platform for deploying, running, and scaling such applications, enterprises need to scale their Kubernetes environments rapidly to keep up. However, rapidly scaling Kubernetes environments can be challenging and create complexities that may be hard for you to address and difficult to resolve without a clear strategy. Part 2 of this blog specifies a few more common techniques that you can use to navigate the complexities of managing scaled-out Kubernetes environments.

Start with: Navigating the Complexities of Operating Large-Scale Kubernetes Environments - 1

Keeping Up with Kubernetes Updates

Kubernetes is a thriving open-source project delivering rapid innovation with releases three times a year. If using fully managed Kubernetes from public cloud providers, be prepared for Kubernetes service life cycles that are aggressive. Test your applications with newer versions of Kubernetes as they are released to minimize upgrade-related downtime. If possible, avoid in-place upgrades of Kubernetes clusters — create new clusters, clone your applications to the new clusters, divert traffic to the new clusters, and retire the old clusters. Proactively adopt more recent versions of Kubernetes for running your business-critical applications to prevent public cloud providers from upgrading your Kubernetes control plane version after the end of life of a particular version of the Kubernetes control plane.

For self-managed Kubernetes platforms, vendors also release aggressively to keep up with upstream innovation. You will have more control over when to upgrade, but you do not want to fall behind as it becomes difficult to upgrade if you are too far back and vendors discontinue support for the versions you are on.

Most Kubernetes providers document their life cycle. Read, understand, and take the necessary actions to keep up with rapid releases and subsequent end-of-life schedules.

Reduce or Eliminate Application/Cluster Downtime

Like all other applications and environments, Kubernetes applications and clusters can also experience service-impacting disasters or outages, which can be self-inflicted or accidental. To keep up with the rapid upgrades as explained in the previous section and recover from unplanned outages, use commercially licensed or open-source Kubernetes data protection solutions that provide backup, DR, and mobility for Kubernetes applications. While adopting such solutions look for ones can handle scaled out multi-cluster environments providing a single pane of glass for your K8s protection needs.

GitOps for Application Life-Cycle Management

Releasing applications on Kubernetes can be challenging and even more daunting in scaled-out environments. GitOps, which leverages the power of Git, a popular software version control tool, to provide both revision and change control for applications within the Kubernetes platform, is a best practice that you should consider adopting in large Kubernetes environments.

This model stores the system's desired state in a software version control system like Git. Developers make changes to the configuration files representing the desired state instead of using CLI or GUI to directly make changes on the K8s clusters. A delta between the desired state stored in Git and the system's actual state indicates the changeset that needs to be deployed. These changesets can be reviewed and approved (or rejected) through standard Git processes such as pull requests, code reviews, and merges to master. Approved and merged changesets to the main branch are applied to K8s clusters for changing the system's current state to the desired state based on the configuration stored in Git.

You can quickly and easily release applications using this practice and roll back as needed if things don't go according to plan. Using GitOps for change control leverages Kubernetes' core functionality as a reconciliation engine. This process provides an implicit audit trail of actions taken while releasing applications enabling easier troubleshooting and root cause analyses in large K8s environments.

Comprehensive Observability

Rich observability is essential for maintaining large Kubernetes environments so that you can proactively and reactively mitigate issues that can otherwise become a revenue and/or productivity impacting outage. Kubernetes observability is complex as Kubernetes constitutes multiple layers of infrastructure and several distinct, highly distributed services, each producing its own set of monitoring data with no single master source/log.

To maintain large Kubernetes environments, you must implement:

■ Monitoring of K8s infrastructure (cluster, nodes, namespaces, pods, etc.) and application resources (CPU, memory, storage, networking)

■ Log collection and management for all Kubernetes services and infrastructure

■ Alerts and notifications

Monitoring data generated from various sources need to be collected separately, correlated, and sometimes analyzed to provide the full context of each event or change to an admin, who can understand it, and take corrective action(s) as needed to keep your environment humming without disruption.

Summary

If you have started dabbling into Kubernetes or have small/medium K8s environments, it's only a matter of time you will be managing a large K8s environment as developers embrace containers and Kubernetes for new apps and refactor existing apps. Adopting a few strategies outlined here can reduce some of your pains that are associated with large K8s estates. Seek solutions that can help with your data management needs for large scale Kubernetes environments making upgrades easier, recover from disasters faster, and backup your precious application data with support for "Namespace-as-a-Service" operating models commonly used in such environments.

Sayandeb Saha is Sr. Director, Product Management, at NetApp
Share this

Industry News

May 08, 2024

MacStadium announced that it has obtained Cloud Security Alliance (CSA) Security, Trust & Assurance Registry (STAR) Level 1, meaning that MacStadium has publicly documented its compliance with CSA’s Cloud Controls Matrix (CCM), and that it joined the Cloud Security Alliance (CSA), the world’s leading organization dedicated to defining and raising awareness of best practices to help ensure a secure cloud computing environment.

May 08, 2024

The Cloud Native Computing Foundation® (CNCF®) released the two-day schedule for CloudNativeSecurityCon North America 2024 happening in Seattle, Washington from June 26-27, 2024.

May 08, 2024

Sumo Logic announced new AI and security analytics capabilities that allow security and development teams to align around a single source of truth and collect and act on data insights more quickly.

May 08, 2024

Red Hat is announcing an optional additional 12-month EUS term for OpenShift 4.14 and subsequent even-numbered Red Hat OpenShift releases in the 4.x series.

May 08, 2024

HAProxy Technologies announced the launch of HAProxy Enterprise 2.9.

May 08, 2024

ArmorCode announced the general availability of AI Correlation in the ArmorCode ASPM Platform.

May 08, 2024

Octopus Deploy launched new features to help simplify Kubernetes CD at scale for enterprises.

May 08, 2024

Cequence announced multiple ML-powered advancements to its Unified API Protection (UAP) platform.

May 07, 2024

Oracle announced plans for Oracle Code Assist, an AI code companion, to help developers boost velocity and enhance code consistency.

May 07, 2024

New Relic launched Secure Developer Alliance.

May 07, 2024

Dynatrace is enhancing its platform with new Kubernetes Security Posture Management (KSPM) capabilities for observability-driven security, configuration, and compliance monitoring.

May 07, 2024

Red Hat announced advances in Red Hat OpenShift AI, an open hybrid artificial intelligence (AI) and machine learning (ML) platform built on Red Hat OpenShift that enables enterprises to create and deliver AI-enabled applications at scale across hybrid clouds.

May 07, 2024

ServiceNow is introducing new capabilities to help teams create apps and scale workflows faster on the Now Platform and to boost developer and admin productivity.

May 06, 2024

Red Hat and Oracle announced the general availability of Red Hat OpenShift on Oracle Cloud Infrastructure (OCI) Compute Virtual Machines (VMs).

May 06, 2024

The Software Engineering Institute at Carnegie Mellon University announced the release of a tool to give a comprehensive visualization of the complete DevSecOps pipeline.