How Do Containerized Applications Stack Up Against Security? - Part 1
February 27, 2019

Taylor Armerding
Synopsys

A good container has to do at least two things well: hold what it's supposed to hold, and not leak. That's true of digital containers that hold applications as well.

So if you're thinking of adopting a technology like containers, one obvious question ought to be: Does it mitigate or reduce security risks and leaks of an organization's data?

Containers are increasingly popular, for good reason. They offer multiple benefits, including portability, easy deployment, and consumption of fewer system resources. But they are also effectively a new layer in the application stack, which requires a new way of thinking about application security. In its Application Container Security Guide(link is external), NIST points out that as containers revolutionize application deployment, organizations must adapt their security strategies to new, dynamic production environments.

That's because containers and the applications they hold can be just as vulnerable to attacks as traditional applications. To design an effective container security strategy, organizations first need to understand the risks that attackers could exploit to make them leak. If you don't know the risks, how can you avoid them? Here are a few:

Isolation

All isolations are not created equal. Container isolation differs significantly from virtual machine (VM) isolation. In VM systems, hypervisor isolation limits the ability of an attacker to move laterally within an application stack if an application is breached.

But containerized applications don't require hypervisors; they share elements of the host operating system's kernel. Some organizations worry, understandably, that if they deploy container-based applications, a breach could expose more of their sensitive data than it would if they used VMs (since different containers running on the same server could have access to different data).

Runtime complexities

The dynamic nature of containers introduces new runtime complexities that application deployment teams must understand and manage. Container orchestration systems like Kubernetes are designed to quickly provision replicated instances of a container image. Containerized applications consist of one or more container images coupled to form the functionality required by the application.

This leads to the topic of application scalability — a function of the quantity of specific container images deployed at any given point. When a new feature is ready for deployment, the application owner creates an update strategy to ensure any existing users of the application aren't affected by the update. This update strategy defines the percentage of images to roll forward with the update, as well as how a rollback might occur if errors are discovered.

Also, the dynamic nature of containerized deployments makes monitoring for malicious behavior or unauthorized access more difficult than in a traditional IT environment. Containerized applications often have different resource requests that are shared at the host server level.

To overcome that difficulty, IT operations and security teams should become partners with their development teams. Information sharing among them will help them understand expected behavior for the application.

Patch management

Most container applications are created from base images — essentially limited, lightweight operating systems. Application container images combine a base image with application-specific elements, such as frameworks, runtimes, and the applications themselves. Each element is a layer within the image. The contents of these layers can harbor software vulnerabilities, which makes them an attractive attack surface.

Consequently, traditional application security that focuses on testing the application is not enough. Security testing of containerized applications must also address vulnerabilities latent within the layers of the image. This is because, unless there are restrictions to the contrary, any executable element within a container image can be executed — even if it's not part of the application's requirements.

As Tim Mackey, technical evangelist at Synopsys, puts it, "Treat each container image as if it were a full operating system, and identify security issues as you would for any virtual machine or server. Remediation of those issues will need a different process, one that takes advantage of capabilities within containerized environments."

It's not enough simply to scan container images, given that some clusters exceed 10,000 images. Organizations must continue to monitor for newly discovered vulnerabilities in any layer — without degrading performance.

Read How Do Containerized Applications Stack Up Against Security? - Part 2

Taylor Armerding is Senior Security Strategist at Synopsys
Share this

Industry News

April 03, 2025

StackGen has partnered with Google Cloud Platform (GCP) to bring its platform to the Google Cloud Marketplace.

April 03, 2025

Tricentis announced its spring release of new cloud capabilities for the company’s AI-powered, model-based test automation solution, Tricentis Tosca.

April 03, 2025

Lucid Software has acquired airfocus, an AI-powered product management and roadmapping platform designed to help teams prioritize and build the right products faster.

April 03, 2025

AutonomyAI announced its launch from stealth with $4 million in pre-seed funding.

April 02, 2025

Kong announced the launch of the latest version of Kong AI Gateway, which introduces new features to provide the AI security and governance guardrails needed to make GenAI and Agentic AI production-ready.

April 02, 2025

Traefik Labs announced significant enhancements to its AI Gateway platform along with new developer tools designed to streamline enterprise AI adoption and API development.

April 02, 2025

Zencoder released its next-generation AI coding and unit testing agents, designed to accelerate software development for professional engineers.

April 02, 2025

Windsurf (formerly Codeium) and Netlify announced a new technology partnership that brings seamless, one-click deployment directly into the developer's integrated development environment (IDE.)

April 02, 2025

Opsera raised $20M in Series B funding.

April 02, 2025

The Cloud Native Computing Foundation® (CNCF®), which builds sustainable ecosystems for cloud native software, is making significant updates to its certification offerings.

April 01, 2025

The Cloud Native Computing Foundation® (CNCF®), which builds sustainable ecosystems for cloud native software, announced the Golden Kubestronaut program, a distinguished recognition for professionals who have demonstrated the highest level of expertise in Kubernetes, cloud native technologies, and Linux administration.

April 01, 2025

Red Hat announced new capabilities and enhancements for Red Hat Developer Hub, Red Hat’s enterprise-grade internal developer portal based on the Backstage project.

April 01, 2025

Platform9 announced that Private Cloud Director Community Edition is generally available.

March 31, 2025

Sonatype expanded support for software development in Rust via the Cargo registry to the entire Sonatype product suite.

March 31, 2025

CloudBolt Software announced its acquisition of StormForge, a provider of machine learning-powered Kubernetes resource optimization.