Progress received multiple awards from prestigious organizations for its inclusive workplace, culture and focus on corporate social responsibility (CSR).
Log Analytics is DEAD. Did I really say that?? Yes I did. Log Analytics is a process of investigating logs and hoping to derive actionable information that might be useful to the business. Many log analytics tools are used to gain visibility into web traffic, security, application behavior, etc. But how valuable and practical is log analytics in reality?
One basic precondition for log analytics is that information to be delved into must be in log files and here lies the basic problem:
In order to derive useful analytics from logs one must have proper logging instrumentation and have it enabled everywhere, all the time.
Not only is this approach impractical and very expensive, except in a few limited cases, but it is also burdensome, imposing a significant performance overhead on the systems that produce these logs.
One must log gigabytes and gigabytes of data, store this data and then analyze it in order to detect a problem. I would call this a brute force approach. As most brute force approaches, it is expensive, slow and unwieldy. In many cases log analytics is used to catch occasional errors or exceptions. Do we really need to have all these logs to catch a few outliers?
Log analytics quickly turns into a Big Data problem – store and analyze everything, everywhere, all the time. Is that really needed? Maybe, or maybe not …
Simple Example
You deploy log analytics and it tells you've got 100 errors or exceptions in the past hour. Typically, you will want to investigate this and start with a specific exception.
Your next question would be “is what am I looking and noise or something that requires attention?” Then you will ask “what else happened” and “why?”. There is a series of questions you would ask might include the following:
■ What was my application doing?
■ What was the response time?
■ What was CPU, memory utilization?
■ What were the I/O rates and network utilization?
■ What was Java GC doing?
■ What other abnormal conditions occurred that I should be looking at?
There are so many variables. There are too many to look at and too much to analyze.
What do you do? Unfortunately this is where log analytics stops, you have to jump elsewhere. The path to root-cause becomes lengthy and painful. You may know that there is a problem, but why you have a problem in many cases is not clear.
We have all this data (big data) yet I don’t know what it means or where to look to find meaning. Of course one can say that you can parse out the log entries and extract metrics. Who will write the parsers? Who maintains the rules? Who writes complex regular expressions? What if the required metrics are not in the log files? In most cases they won’t be.
The biggest problem with log analytics is that what can be analyzed must be always logged. You need to know what information you need for root cause in advance. How often do you know what you need in advance? It is what you don’t know, have not thought about, did not instrument, did not log. It is unlikely you will have the information you will need.
Customers don’t want log analytics; customers want solutions to their problems. So what do I propose? I think log analytics is really morphing into a larger discipline.
The Post Log Analytics World
It is Application Analytics that combines logs, metrics, transactions, topology, changes, and more, along with machine learning techniques: where asking about quality of service, application performance, business and IT KPIs is a click away.
This approach must be combined with smart instrumentation, heuristics and even crowd-sourced knowledge that points to anomalies, suppresses noise and reveals important attributes without constantly collecting terabytes of data.
How do I understand what I don’t know or have not collected yet? How do I know what questions to ask?
Essentially Application Analytics is about managing risks lurking within application and IT infrastructures which are inherently complex and “broken”.
Log Analytics is dead, not because is not useful, but because it must quickly evolve into the next level.
Albert Mavashev is Chief Technology Officer at jKool.
Industry News
Red Hat has completed its acquisition of Neural Magic, a provider of software and algorithms that accelerate generative AI (gen AI) inference workloads.
Code Intelligence announced the launch of Spark, an AI test agent that autonomously identifies bugs in unknown code without human interaction.
Checkmarx announced a new generation in software supply chain security with its Secrets Detection and Repository Health solutions to minimize application risk.
SmartBear has appointed Dan Faulkner, the company’s Chief Product Officer, as Chief Executive Officer.
Horizon3.ai announced the release of NodeZero™ Kubernetes Pentesting, a new capability available to all NodeZero users.
Veracode acquired certain assets of Phylum, including its malicious package analysis, detection, and mitigation technology.
AppViewX announced the completion of its acquisition by Haveli Investments.
Check Point® Software Technologies Ltd. has been recognized as a Leader in the 2024 Gartner® Magic Quadrant™ for Email Security Platforms (ESP).
Progress announced its partnership with the American Institute of CPAs (AICPA), the world’s largest member association representing the CPA profession.
Kurrent announced $12 million in funding, its rebrand from Event Store and the official launch of Kurrent Enterprise Edition, now commercially available.
Blitzy announced the launch of the Blitzy Platform, a category-defining agentic platform that accelerates software development for enterprises by autonomously batch building up to 80% of software applications.
Sonata Software launched IntellQA, a Harmoni.AI powered testing automation and acceleration platform designed to transform software delivery for global enterprises.
Sonar signed a definitive agreement to acquire Tidelift, a provider of software supply chain security solutions that help organizations manage the risk of open source software.