AI-Powered DevOps: Best Practices for Business Adoption
October 17, 2024

Jori Ramakers
Tricentis

Global adoption of artificial intelligence (AI) has skyrocketed, with 72% of companies incorporating the technology. IT teams have been leading this transformation, using AI to not only solve problems, but to accelerate innovation. And with the global AI market expected to reach $184 billion by the year's end, businesses that embrace this shift will be the ones defining the future.

As part of this shift, we've seen AI technologies become a powerful asset for DevOps teams. Organizations are under pressure to ramp up their software delivery cycles toward faster, more efficient, releases. And those using this technology are reaping its impact. In a recent AI-augmented DevOps trends report we conducted, we found that DevOps teams leveraging AI are 30% more likely to rate their performance as either extremely or very effective.

It is evident that AI is already addressing key challenges experienced by DevOps teams. From improving productivity and closing skills gaps to cutting costs and refining software quality. Furthermore, AI copilots are gaining traction, offering valuable support in planning, code development, and software testing. The potential of AI is no secret, but implementing this technology is easier said than done. To ensure successful AI adoption, it is vital to equip development and testing teams with the necessary skills to collaborate with AI systems effectively.


Empowering DevOps with AI

Testing stands out as the area yielding the highest ROI from AI within the software development lifecycle (SDLC), with almost two-thirds (60%) of DevOps practitioners highlighting it to us as the most valuable investment. AI is employed to enhance a variety of testing activities, from creating testing plans and generating test cases to analyzing outcomes and assessing the risks of code changes. This approach allows quality assurance (QA) teams to prioritize the most error-prone areas, focusing their efforts where it matters most.

AI has notably impacted both coding and security, with DevOps practitioners ranking these areas just behind testing. In security, AI tools are proving highly effective at proactively identifying and addressing vulnerabilities, boosting threat detection capabilities, and automating responses to emerging risks. Nonetheless, significant potential for AI remains in phases such as release management, deployment, platform engineering, and planning. These stages, which are crucial for ensuring software stability and scalability, could greatly benefit from AI's predictive abilities, resource optimization, and the streamlining of operational and maintenance processes.

Propelling AI Integration: Expertise and Confidence as Key Drivers

While generative AI and AI copilots have been instrumental in driving adoption of this technology, there remains a major shortage of AI expertise within DevOps. This gap is significant, especially given that humans remain deeply involved in the process, with over two-thirds of our respondents indicating they manually review AI-generated outputs at least half the time.

To address these challenges, organizations should devise specialized training courses to properly equip their DevOps teams with the skills to leverage AI tools. Whether through industry-recognized courses or internal programs, encouraging certification can enhance technical expertise significantly.

Upskilling is also essential, as AI requires human oversight for strategic decision-making, particularly in areas where contextual understanding is key. Additionally, establishing clear governance frameworks is critical to building trust and confidence in AI's contribution to software development. Balancing these factors will ensure AI becomes a valuable asset, driving efficiency while maintaining accountability.

American government officials have begun developing AI guidance, such as the White House's AI Bill of Rights blueprint, which envisions a national framework focused on safeguarding privacy, transparency, and fairness in AI applications. Overlapping state and federal laws create a complex regulatory landscape. Organizations that keep pace with both guidelines can ensure their AI systems are ethical, compliant, and trusted by their employees and the public.

Fueling Sustainable Team Growth for Lasting Impact

Organizations have tremendous potential to enhance DevOps practices through AI integration. However, as I mentioned earlier, successful AI adoption is only possible when development and testing teams are equipped with the skills needed in order to collaborate effectively with AI systems. Establishing trust in AI outputs will also require transparent governance and regulations, helping build confidence in the technology's capabilities.

Teams investing in upskilling and fostering trust in AI will be well-prepared to balance AI generation with human oversight. This approach ensures they can leverage AI as a powerful tool to boost efficiency, speed up time to market, and uphold high software quality standards.

Jori Ramakers is Senior Director of Customer Experience Strategy at Tricentis
Share this

Industry News

March 10, 2025

Parasoft is accelerating the release of its C/C++test 2025.1 solution, following the just-published MISRA C:2025 coding standard.

March 10, 2025

GitHub is making GitHub Advanced Security (GHAS) more accessible for developers and teams of all sizes.

March 10, 2025

ArmorCode announced the enhanced ArmorCode Partner Program, highlighting its goal to achieve a 100 percent channel-first sales model.

March 06, 2025

Parasoft is showcasing its latest product innovations at embedded world Exhibition, booth 4-318, including new GenAI integration with Microsoft Visual Studio Code (VS Code) to optimize test automation of safety-critical applications while reducing development time, cost, and risk.

March 06, 2025

JFrog announced general availability of its integration with NVIDIA NIM microservices, part of the NVIDIA AI Enterprise software platform.

March 06, 2025

CloudCasa by Catalogic announce an integration with SUSE® Rancher Prime via a new Rancher Prime Extension.

March 05, 2025

MacStadium announced the extended availability of Orka Cluster 3.2, establishing the market’s first enterprise-grade macOS virtualization solution available across multiple deployment options.

March 05, 2025

JFrog is partnering with Hugging Face, host of a repository of public machine learning (ML) models — the Hugging Face Hub — designed to achieve more robust security scans and analysis forevery ML model in their library.

March 05, 2025

Copado launched DevOps Automation Agent on Salesforce's AgentExchange, a global ecosystem marketplace powered by AppExchange for leading partners building new third-party agents and agent actions for Agentforce.

March 05, 2025

Harness completed its merger with Traceable, effective March 4, 2025.

March 04, 2025

JFrog released JFrog ML, an MLOps solution as part of the JFrog Platform designed to enable development teams, data scientists and ML engineers to quickly develop and deploy enterprise-ready AI applications at scale.

March 04, 2025

Progress announced the addition of Web Application Firewall (WAF) functionality to Progress® MOVEit® Cloud managed file transfer (MFT) solution.

March 04, 2025

Couchbase launched Couchbase Edge Server, an offline-first, lightweight database server and sync solution designed to provide low latency data access, consolidation, storage and processing for applications in resource-constrained edge environments.

March 04, 2025

Sonatype announced end-to-end AI Software Composition Analysis (AI SCA) capabilities that enable enterprises to harness the full potential of AI.

March 03, 2025

Aviatrix® announced the launch of the Aviatrix Kubernetes Firewall.