Progress announced new powerful capabilities and enhancements in the latest release of Progress® Sitefinity®.
JFrog announced a new integration with Amazon SageMaker, which helps companies build, train, and deploy machine learning (ML) models for any use case with fully managed infrastructure, tools, and workflows.
By pairing JFrog Artifactory with Amazon SageMaker, ML models can be delivered alongside all other software development components in a modern DevSecOps workflow, making each model immutable, traceable, secure, and validated as it matures for release. JFrog also unveiled new versioning capabilities for its ML Model management solution, which help ensure compliance and security are incorporated at every step of ML model development.
"As more companies begin managing big data in the cloud, DevOps team leaders are asking how they can scale data science and ML capabilities to accelerate software delivery without introducing risk and complexity," said Kelly Hartman, SVP, Global Channels and Alliances, JFrog. "The combination of Artifactory and Amazon SageMaker creates a single source of truth that indoctrinates DevSecOps best practices to ML model development in the cloud – delivering flexibility, speed, security, and peace of mind – breaking into a new frontier of MLSecOps.”
JFrog’s Amazon SageMaker integration applies DevSecOps best practices to ML model management, allowing developers and data scientists to expand, accelerate, and secure the development of ML projects in a manner that is enterprise-grade, secure, and abides by regulatory and organizational compliance.
JFrog’s new Amazon SageMaker integration allows organizations to:
- Maintain a single source of truth for data scientists and developers, ensuring all models are readily accessible, traceable, and tamper-proof.
- Bring ML closer to the software development and production lifecycle workflows, protecting models from deletion or modification.
- Develop, train, secure and deploy ML models.
- Detect and block the use of malicious ML models across the organization.
- Scan ML model licenses to ensure compliance with company policies and regulatory requirements.
- Store home-grown or internally augmented ML models with robust access controls and versioning history for greater transparency.
- Bundle and distribute ML models as part of any software release.
Along with its Amazon SageMaker integration, JFrog unveiled new versioning capabilities for its ML Model Management solution that incorporate model development into an organization’s DevSecOps workflow to increase transparency around each model version so developers, DevOps teams, and data scientists can ensure the correct, secure version of a model is utilized.
The JFrog integration with Amazon SageMaker, available now for JFrog customers and Amazon SageMaker users, ensures all artifacts consumed by data scientists or used to develop ML applications are pulled from and saved in JFrog Artifactory.
Industry News
Red Hat announced the general availability of Red Hat Enterprise Linux 9.5, the latest version of the enterprise Linux platform.
Securiti announced a new solution - Security for AI Copilots in SaaS apps.
Spectro Cloud completed a $75 million Series C funding round led by Growth Equity at Goldman Sachs Alternatives with participation from existing Spectro Cloud investors.
The Cloud Native Computing Foundation® (CNCF®), which builds sustainable ecosystems for cloud native software, has announced significant momentum around cloud native training and certifications with the addition of three new project-centric certifications and a series of new Platform Engineering-specific certifications:
Red Hat announced the latest version of Red Hat OpenShift AI, its artificial intelligence (AI) and machine learning (ML) platform built on Red Hat OpenShift that enables enterprises to create and deliver AI-enabled applications at scale across the hybrid cloud.
Salesforce announced agentic lifecycle management tools to automate Agentforce testing, prototype agents in secure Sandbox environments, and transparently manage usage at scale.
OpenText™ unveiled Cloud Editions (CE) 24.4, presenting a suite of transformative advancements in Business Cloud, AI, and Technology to empower the future of AI-driven knowledge work.
Red Hat announced new capabilities and enhancements for Red Hat Developer Hub, Red Hat’s enterprise-grade developer portal based on the Backstage project.
Pegasystems announced the availability of new AI-driven legacy discovery capabilities in Pega GenAI Blueprint™ to accelerate the daunting task of modernizing legacy systems that hold organizations back.
Tricentis launched enhanced cloud capabilities for its flagship solution, Tricentis Tosca, bringing enterprise-ready end-to-end test automation to the cloud.
Rafay Systems announced new platform advancements that help enterprises and GPU cloud providers deliver developer-friendly consumption workflows for GPU infrastructure.
Apiiro introduced Code-to-Runtime, a new capability using Apiiro’s deep code analysis (DCA) technology to map software architecture and trace all types of software components including APIs, open source software (OSS), and containers to code owners while enriching it with business impact.
Zesty announced the launch of Kompass, its automated Kubernetes optimization platform.
MacStadium announced the launch of Orka Engine, the latest addition to its Orka product line.