Beyond Code Generation: Integrating AI Throughout the Software Development Lifecycle
January 16, 2024

Taylor McCaslin
GitLab

Today, every team involved in developing and delivering software faces the paradox of deploying secure and compliant software faster than ever, while working under time and resource constraints. AI is often discussed as a tool to help enable faster code generation — but by focusing solely on automating code development, much of the potential of AI is left untapped.

In fact, recent research from GitLab found that developers spend only 25% of their total work time writing code, using the remaining time to adjust, understand, test, and maintain code, as well as identify and mitigate security vulnerabilities. If the use of AI is consigned to code generation, organizations may miss some of the most transformative opportunities for AI in software development.


Let's walk through three ways to use AI in your DevSecOps workflows for faster cycle times and accelerated value stream delivery: predictive analytics, code testing and review, and security vulnerability detection.

1. Planning and Predictive Analytics

DevSecOps teams can incorporate AI into the entire software development lifecycle, including at its earliest stages before they even begin writing code. Using AI alongside a unified data store, teams can assess all of the data created as part of their software development lifecycle to visualize their end-to-end workstreams, identify any areas of inefficiency, and optimize these workflows to deliver value quickly and efficiently.

AI can also improve collaboration between teams by automating project management processes, summarizing discussions about deliverables, and creating, organizing, and automatically labeling issues and merge requests to improve planning and execution.

Teams can also use AI to improve the end-user experience by assessing user metrics, feedback, and usage trends and generating recommendations for improvements. Then, once presented with this information, teams can validate the findings using AI without having to parse through data and surface the bottlenecks themselves.

2. Code Reviews and Quality Assurance

Developers are under immense pressure to deliver code at the speed of the market, while also ensuring that it's high-quality and secure. Development teams can incorporate AI to analyze data patterns and identify potential issues in code, leading to faster testing, fewer bugs, and higher-quality software. With upfront automation, intelligent algorithms can spot bugs and errors that humans might miss.

Another critical process to ensure high-quality code delivery is code review. Code reviews are critical to helping developers share knowledge and maintain high-quality software — but when working within larger teams, it can be challenging and time-consuming to identify the reviewer who is best equipped with the necessary experience and context. AI can be used to select the most relevant code reviewers, removing guesswork and ensuring that reviewers have the necessary contextual knowledge to effectively review the selected code. This helps organizations avoid some of the bottlenecks that arise when working in large teams and enable faster software delivery.

3. Identifying Security Vulnerabilities

Security professionals face pressures similar to their development counterparts. Despite constrained budgets teams are under more pressure than ever to maintain their organization's security posture under the looming and increasing threat of cybercrimes. By strategically implementing AI within security processes, security teams can focus on proactive work, rather than on menial and repetitive tasks.

For example, AI can be used to help identify and mitigate potential security threats by analyzing data patterns and user behavior, as well as automate security testing and analysis. This can support faster vulnerability detection and remediation without sacrificing accuracy.

Security has become more of a shared responsibility between security professionals and developers than ever before. AI can lift some of the workload from security teams and empower developers to identify and mitigate vulnerabilities independently, enabling stronger collaboration between the two teams. This can help optimize the process of securing an application to prevent vulnerabilities that can be exploited when it's in production.

Above all, it's important to remember that AI is not a one-size-fits-all technology. Each organization will need to thoughtfully consider priority areas to incorporate automation within their software development workflows. By starting small, and identifying areas with the lowest risk, organizations can strategically scale their AI use without creating vulnerabilities, risking adherence to compliance standards, or risking relationships with customers, partners, investors, and other stakeholders.

AI can be a hugely transformational technology when incorporated thoughtfully. Rather than relegate it to code generation, organizations can fulfill its promise by weaving it into their workflows to improve efficiency and security, while driving innovation.

Taylor McCaslin is Group Manager, Product - Data Science AI/ML at GitLab
Share this

Industry News

March 06, 2025

Parasoft(link is external) is showcasing its latest product innovations at embedded world Exhibition, booth 4-318(link is external), including new GenAI integration with Microsoft Visual Studio Code (VS Code) to optimize test automation of safety-critical applications while reducing development time, cost, and risk.

March 06, 2025

JFrog announced general availability of its integration with NVIDIA NIM microservices, part of the NVIDIA AI Enterprise software platform.

March 06, 2025

CloudCasa by Catalogic announce an integration with SUSE® Rancher Prime via a new Rancher Prime Extension.

March 05, 2025

MacStadium(link is external) announced the extended availability of Orka(link is external) Cluster 3.2, establishing the market’s first enterprise-grade macOS virtualization solution available across multiple deployment options.

March 05, 2025

JFrog is partnering with Hugging Face, host of a repository of public machine learning (ML) models — the Hugging Face Hub — designed to achieve more robust security scans and analysis forevery ML model in their library.

March 05, 2025

Copado launched DevOps Automation Agent on Salesforce's AgentExchange, a global ecosystem marketplace powered by AppExchange for leading partners building new third-party agents and agent actions for Agentforce.

March 05, 2025

Harness completed its merger with Traceable, effective March 4, 2025.

March 04, 2025

JFrog released JFrog ML, an MLOps solution as part of the JFrog Platform designed to enable development teams, data scientists and ML engineers to quickly develop and deploy enterprise-ready AI applications at scale.

March 04, 2025

Progress announced the addition of Web Application Firewall (WAF) functionality to Progress® MOVEit® Cloud managed file transfer (MFT) solution.

March 04, 2025

Couchbase launched Couchbase Edge Server, an offline-first, lightweight database server and sync solution designed to provide low latency data access, consolidation, storage and processing for applications in resource-constrained edge environments.

March 04, 2025

Sonatype announced end-to-end AI Software Composition Analysis (AI SCA) capabilities that enable enterprises to harness the full potential of AI.

March 03, 2025

Aviatrix® announced the launch of the Aviatrix Kubernetes Firewall.

March 03, 2025

ScaleOps announced the general availability of their Pod Placement feature, a solution that helps companies manage Kubernetes infrastructure.

March 03, 2025

Cloudsmith raised a $23 million Series B funding round led by TCV, with participation from Insight Partners and existing investors.

February 27, 2025

IBM has completed its acquisition of HashiCorp, whose products automate and secure the infrastructure that underpins hybrid cloud applications and generative AI.