3 Ways No-Code is Democratizing AI
July 26, 2022

Loren Goodman
InRule Technology

We have become accustomed to so many different technologies in our lives today. Most share a common history — there was a democratizing force that brought it from an abstract, unattainable thing we only heard about to something we can no longer live without. Take the computer — for decades, computers were larger than refrigerators and were only accessible to the largest companies or nations. Today though, most of the world carries one in their pocket. Mass-marketed desktop computers balanced cost and operational restraints with measured capabilities tailored to the needs of an individual; they were relatively easy to use, and one did not need to know how they worked to get value from them. They provided immense value for its users.

Looking at the world of emerging technologies, artificial intelligence (AI) appears to be the next technology on the cusp of breaking into the mainstream, thanks to the development and growing proliferation of no-code AI. A code-free technology that enables non-AI experts to implement and test their ideas without any need for a data scientist, no-code AI will prove to be a democratizing force within the AI industry enabling greater accessibility and use by businesses outside of the Fortune 100.

For businesses to remain competitive, they must invest time, money and resources into their AI capabilities. Luckily, with no-code AI, much like the desktop PC, there are varying levels of investment accessible to all instead of just those that can leap the historical barriers to entry. There is no need to establish a data-science practice, and there is no need to learn complex technologies.

To reap value, you need data and a system of automation; no-code AI brings the automation, and most organizations are already overflowing with data. A 2020 Salesforce report, which surveyed 100 global IT and engineering leaders, found that company departments utilizing workflow automation reduced time spent on manual processes by 66% and reduced cost by 46% compared to year-over-year outcomes. By streamlining manual processes through no-code AI models, businesses can scale faster while reducing the consumption of human time and increasing the accuracy of predictions.

Here are three key ways no-code AI is democratizing the technology:

1. No-Code AI Removes the Need for A High Degree of Training

It is no secret that a labor shortage exists for highly technical and skilled employees. Companies across all industries have difficulty finding and retaining qualified data scientists who can develop and create AI/ML models. This skills gap isn't going away anytime soon. No-code AI workflows empower citizen data scientists, including business analysts and other subject matter experts, to create, train and deploy powerful machine learning models. Another benefit of no-code AI is the relatively flat learning curve, allowing it to be quickly taught, replicated, and scaled across departments. This enables employers to combat the skills gap within their workforce by incorporating no-code tools training into employee development and onboarding.

2. Quicker Model Creation and Faster ROI

For companies lucky enough to have a data scientist on their staff, no-code AI enables them to work faster and more efficiently than before. No-code AI provides data scientists with automation and reusability that allows quick delivery of prototypes and iterative improvements using model explainability, revealing areas of model weakness. By employing no-code AI, data scientists can easily pinpoint problem areas within models, allowing managers to address any issues before they manifest into greater dilemmas quickly. Optimizing these processes frees up valuable bandwidth for data scientists to focus on more specialized research and projects within the company.

3. Better Explainability + Bias Detection Are Baked In

The Silicon Valley ethos of “move fast and break things” is gone. After years of eroding trust by big tech, consumers and businesses want to ensure the tech they invest in follows the “first do no harm” principle. Because no-code AI is created with the goal of enabling non-data scientists to harness the power of AI, it needs to be embedded with a higher level of explainability and bias detection to reduce the risk of human error.

No-code AI has proven to be a simple yet powerful solution aiming to bring AI to the masses. By democratizing AI with improved accessibility, businesses, regardless of size, will be able to compete more aggressively with AI in their toolbox.

Loren Goodman is Co-Founder and CTO of InRule Technology
Share this

Industry News

December 19, 2024

Check Point® Software Technologies Ltd. has been recognized as a Leader in the 2024 Gartner® Magic Quadrant™ for Email Security Platforms (ESP).

December 19, 2024

Progress announced its partnership with the American Institute of CPAs (AICPA), the world’s largest member association representing the CPA profession.

December 18, 2024

Kurrent announced $12 million in funding, its rebrand from Event Store and the official launch of Kurrent Enterprise Edition, now commercially available.

December 18, 2024

Blitzy announced the launch of the Blitzy Platform, a category-defining agentic platform that accelerates software development for enterprises by autonomously batch building up to 80% of software applications.

December 17, 2024

Sonata Software launched IntellQA, a Harmoni.AI powered testing automation and acceleration platform designed to transform software delivery for global enterprises.

December 17, 2024

Sonar signed a definitive agreement to acquire Tidelift, a provider of software supply chain security solutions that help organizations manage the risk of open source software.

December 17, 2024

Kindo formally launched its channel partner program.

December 16, 2024

Red Hat announced the latest release of Red Hat Enterprise Linux AI (RHEL AI), Red Hat’s foundation model platform for more seamlessly developing, testing and running generative artificial intelligence (gen AI) models for enterprise applications.

December 16, 2024

Fastly announced the general availability of Fastly AI Accelerator.

December 12, 2024

Amazon Web Services (AWS) announced the launch and general availability of Amazon Q Developer plugins for Datadog and Wiz in the AWS Management Console.

December 12, 2024

vFunction released new capabilities that solve a major microservices headache for development teams – keeping documentation current as systems evolve – and make it simpler to manage and remediate tech debt.

December 11, 2024

CyberArk announced the launch of FuzzyAI, an open-source framework that helps organizations identify and address AI model vulnerabilities, like guardrail bypassing and harmful output generation, in cloud-hosted and in-house AI models.

December 11, 2024

Grid Dynamics announced the launch of its developer portal.

December 10, 2024

LTIMindtree announced a strategic partnership with GitHub.