The 5 Longest Lead Times in Software Delivery - Part 2
March 09, 2017

Mark Levy
Micro Focus

Every enterprise IT organization is unique in that it will have different bottlenecks and constraints in its deployment pipelines. With that being said, there are some common problem areas that typically produce the longest lead times in your software delivery process. Here are three more most common areas that generate the longest lead times.

Start with The 5 Longest Lead Times in Software Delivery - Part 1

3. Environment Management and Provisioning

The effective and efficient management of dev, test and production environments is critical to a successful release deployment. The combination of increased business requests, the large number of applications, and multiple application infrastructures have exponentially increased the complexity of managing these environments. There is nothing more demoralizing to a dev team than having to wait to get an environment to test a new feature. Lack of environment availability and/or environment contention can create extremely long lead times, delay releases, and increase the cost of release deployments. Dev and Test environments also often are misconfigured or are so different from production environments that they end up with production problems despite having passed preproduction testing.

Creating these environments is a very repetitive task that should be documented, automated, and put under revision control. You need to implement a process to schedule, manage, track, and control all of the environments in your deployment pipeline. Automated and self-service environmental provisioning will streamline the process to reduce lead times. The environments you create need to be as "production-like" as possible. Your developers will also be far more productive and happy. As you automate the provisioning of your environments your MTTR (mean-time-to-repair) will go down significantly as you will be able to replace your environments on a moment's notice and begin to move towards an immutable infrastructure.

4. Manual Software Deployments

People should not move or deploy the "bits" as machines are far better and much more consistent at deploying applications than humans. You would be surprised at the number of organizations that still manually deploy their code. Automating manual deployment tasks is one of the first things you should look at. You can get a lot of quick wins with automation, and this approach can be delivered rapidly without major organizational changes. The initial effort to document and automate your deployment processes pays off once you start letting the machines perform the work. It is not uncommon for organizations to see deployment lead times reduced by over 90%.

Automate your code and configuration deployments with a single set of deployment processes across all environments. Ensure that these deploy from the same source. Deploying the same way across all of your environments is extremely efficient in both time and cost. By using the same process, it gets tested more often and any environmental issues will be easier to identify. All preproduction deployments should be rehearsals for the final deployment into production. The more automated this process is, the more repeatable and reliable it will be. When it's time to deploy to production, you will be ready. This translates into dramatically lower lead times, less downtime and keeps the business open so that it can make more money.

5. Manual Software Testing

Once the environment is ready and the code is deployed, it's time to test to ensure the code is working as expected and doesn't break anything else. The problem is that most organizations today manually test their code base. Manual software testing drives lead times up because the process is very slow, error prone and expensive to scale out across large organizations. As the velocity of software delivery increases, you have to exponentially increase the number of human resources to test the software changes. Furthermore, manual testing provides lower overall coverage. The time and expense of manual testing forces organizations into the "Batch and Queue" mode which slows the overall flow and dramatically increases lead times.

Automated testing is a prime area to focus on when you need to reduce lead times. Automated testing is less expensive, more reliable and repeatable, can provide broader coverage, and is a lot faster. There will be an initial cost of developing the automated test scripts, but a lot of that can be absorbed by shifting manual tester resources to "Test Development Engineers" to focus on automated API-based testing. Over time your manual testing costs and lead times will go down as your quality improves.

Summary

The velocity and complexity of software delivery continues to increase as businesses adapt to new economic conditions. Optimizing and automating your deployment pipelines will dramatically reduce your lead times and enable you to deliver software faster and with better quality. Delivering software faster means businesses can innovate and test out new ideas more quickly. The business can deliver features and bring on new revenue streams faster, making them agile enough to respond immediately to marketplace opportunity, events and trends.

Mark Levy is Director of Strategy, Software Delivery at Micro Focus
Share this

Industry News

December 19, 2024

Check Point® Software Technologies Ltd. has been recognized as a Leader in the 2024 Gartner® Magic Quadrant™ for Email Security Platforms (ESP).

December 19, 2024

Progress announced its partnership with the American Institute of CPAs (AICPA), the world’s largest member association representing the CPA profession.

December 18, 2024

Kurrent announced $12 million in funding, its rebrand from Event Store and the official launch of Kurrent Enterprise Edition, now commercially available.

December 18, 2024

Blitzy announced the launch of the Blitzy Platform, a category-defining agentic platform that accelerates software development for enterprises by autonomously batch building up to 80% of software applications.

December 17, 2024

Sonata Software launched IntellQA, a Harmoni.AI powered testing automation and acceleration platform designed to transform software delivery for global enterprises.

December 17, 2024

Sonar signed a definitive agreement to acquire Tidelift, a provider of software supply chain security solutions that help organizations manage the risk of open source software.

December 17, 2024

Kindo formally launched its channel partner program.

December 16, 2024

Red Hat announced the latest release of Red Hat Enterprise Linux AI (RHEL AI), Red Hat’s foundation model platform for more seamlessly developing, testing and running generative artificial intelligence (gen AI) models for enterprise applications.

December 16, 2024

Fastly announced the general availability of Fastly AI Accelerator.

December 12, 2024

Amazon Web Services (AWS) announced the launch and general availability of Amazon Q Developer plugins for Datadog and Wiz in the AWS Management Console.

December 12, 2024

vFunction released new capabilities that solve a major microservices headache for development teams – keeping documentation current as systems evolve – and make it simpler to manage and remediate tech debt.

December 11, 2024

CyberArk announced the launch of FuzzyAI, an open-source framework that helps organizations identify and address AI model vulnerabilities, like guardrail bypassing and harmful output generation, in cloud-hosted and in-house AI models.

December 11, 2024

Grid Dynamics announced the launch of its developer portal.

December 10, 2024

LTIMindtree announced a strategic partnership with GitHub.