The DataOps Manifesto: 4 Keys to Creating a Truly Data-Driven Business
February 17, 2022

Sri Raghavan
Teradata

DataOps has emerged as an Agile methodology to improve the speed and accuracy of analytics through new data management practices and processes, including code automation. Simply understood, DataOps is data management for the AI era, powering both automation at scale and friction-free collaboration between humans and machines.

In the digital era, organizations commonly serve their frontline workers' needs with hundreds of applications, collectively generating anywhere between thousands and millions of queries every day. The challenge for IT teams is that these applications are not static; they must constantly evolve to meet the organization's ever-changing needs. By introducing and enhancing automations, DataOps can improve application performance, security, and data analytics with only modest human oversight.

Dataops Enables Organizations to Improve Data Quality and Efficiency

Implemented correctly, DataOps is an enterprise-wide Agile approach designed to ensure every person, system, or machine has secure access to the right data, when and where it’s needed. Rather than simply streamlining the flow of ever-increasing quantities of data, DataOps focuses on improving the quality and speed of data analytics from initial data preparation to final reporting.

Additionally, integrating AI and machine learning can improve productivity by reducing development time — intelligently identifying, suggesting, and testing solutions for issues with code. Automations introduced by DataOps can also augment security, using machines to spot and triage vulnerabilities. Given the vast number of cybersecurity threats enterprises now face, turning vulnerability detection and prioritization over to a machine means freeing precious IT team human resources to focus on bigger issues.

Reality Check: Dataops Depends on Validated, Respected Solutions

DataOps innovations can be incredibly valuable, particularly during a talent crunch that has limited organizations' abilities to expand their human IT resources. However, operationalizing AI at a scale sufficient to meet the demands of today’s data-driven enterprises is no easy feat.

In reality, very few organizations are presently capable of widespread deployment of scaled ML and AI solutions in production environments. Deploying DataOps requires an organization to be aligned with the correct change-focused mindset and select a data platform with trustworthy tools — ones that have already been validated as beneficial by other, comparable companies.

A Successful Dataops Strategy Requires Purposeful Organizational Changes

In order to implement successful and sustainable DataOps practices, companies must ensure that the correct processes are in place to drive operationalization of their results, and that their business cultures are receptive to analytical insights. Broadly speaking, if a DataOps strategy aspires to truly realize the next evolution of data management, it will require the following four steps:

1. Embracing change. Effective operationalization begins with the organization evaluating its existing structure and processes, then welcoming rather than impeding change. Deep adoption may require changing the culture of the organization or specific business units to embrace continuous change through constant learning from both stakeholders and customers.

2. Exalting quality. While AI can rapidly produce high-quality results, unexplained or underexplained conclusions can undermine human trust in the technology. Data governance is important and taking a human-guided approach is key. Without the ability to self-police, the data set will be at risk of bias and drift, negatively impacting the organization's desired or intended results.

3. Mandating teamwork. Historically, enterprises allowed individual business units to manage their own data, leading to everything from incompatible data formats to separately stored and managed information. In the modern era, identifying and improving utilization of high-value data depends upon breaking down old data silos — a step that enables IT teams to work on the entire data set, and determine appropriate levels of aggregation and pre-analysis.

4. Adopting new techniques and tools. Identifying fit-for-purpose AI tools and adopting the agile "test and learn" approach, which enables key stakeholders to see the tools' results and provide feedback to continuously improve their performance, will play a key role in driving AI workflows. As suggested above, the organization's culture needs to embrace and internalize this feedback to improve AI results over time.

Introducing DevOps into data-driven organizations means raising the bar for agility — a structural, cultural upgrade that many businesses will realize is long overdue — and making them more competitive. Moreover, pairing DevOps practices with well-governed AI solutions that are capable of scaling to data warehouse environments will position data-driven businesses for success in an increasingly dynamic world.

Sri Raghavan is Director of Data Science and Advanced Analytics at Teradata
Share this

Industry News

November 20, 2024

Spectro Cloud completed a $75 million Series C funding round led by Growth Equity at Goldman Sachs Alternatives with participation from existing Spectro Cloud investors.

November 20, 2024

The Cloud Native Computing Foundation® (CNCF®), which builds sustainable ecosystems for cloud native software, has announced significant momentum around cloud native training and certifications with the addition of three new project-centric certifications and a series of new Platform Engineering-specific certifications:

November 20, 2024

Red Hat announced the latest version of Red Hat OpenShift AI, its artificial intelligence (AI) and machine learning (ML) platform built on Red Hat OpenShift that enables enterprises to create and deliver AI-enabled applications at scale across the hybrid cloud.

November 20, 2024

Salesforce announced agentic lifecycle management tools to automate Agentforce testing, prototype agents in secure Sandbox environments, and transparently manage usage at scale.

November 19, 2024

OpenText™ unveiled Cloud Editions (CE) 24.4, presenting a suite of transformative advancements in Business Cloud, AI, and Technology to empower the future of AI-driven knowledge work.

November 19, 2024

Red Hat announced new capabilities and enhancements for Red Hat Developer Hub, Red Hat’s enterprise-grade developer portal based on the Backstage project.

November 19, 2024

Pegasystems announced the availability of new AI-driven legacy discovery capabilities in Pega GenAI Blueprint™ to accelerate the daunting task of modernizing legacy systems that hold organizations back.

November 19, 2024

Tricentis launched enhanced cloud capabilities for its flagship solution, Tricentis Tosca, bringing enterprise-ready end-to-end test automation to the cloud.

November 19, 2024

Rafay Systems announced new platform advancements that help enterprises and GPU cloud providers deliver developer-friendly consumption workflows for GPU infrastructure.

November 19, 2024

Apiiro introduced Code-to-Runtime, a new capability using Apiiro’s deep code analysis (DCA) technology to map software architecture and trace all types of software components including APIs, open source software (OSS), and containers to code owners while enriching it with business impact.

November 19, 2024

Zesty announced the launch of Kompass, its automated Kubernetes optimization platform.

November 18, 2024

MacStadium announced the launch of Orka Engine, the latest addition to its Orka product line.

November 18, 2024

Elastic announced its AI ecosystem to help enterprise developers accelerate building and deploying their Retrieval Augmented Generation (RAG) applications.

Read the full news on APMdigest

November 18, 2024

Red Hat introduced new capabilities and enhancements for Red Hat OpenShift, a hybrid cloud application platform powered by Kubernetes, as well as the technology preview of Red Hat OpenShift Lightspeed.

November 18, 2024

Traefik Labs announced API Sandbox as a Service to streamline and accelerate mock API development, and Traefik Proxy v3.2.