Why Choosing the Right Data Path Can Make or Break DevOps Projects - Part 2
October 22, 2019

Jonathan Parnell
Insight Enterprises

Organizations need to make a concerted effort to "shift left" with their overall data architecture discussions. This shift allows more of the right questions about data to be asked, answered and incorporated early on in the design of the overall application.

Start with Why Choosing the Right Data Path Can Make or Break DevOps Projects - Part 1

Asking the Right Questions About Data

Part of this early collaborative work may involve asking key questions about data. These include the best ways for an application and its users to interact with the underlying data, such as:

■ How will data be ingested and from where?

■ How will we access the data?

■ How and where will we store it?

■ How do we update and/or maintain legacy databases as we build for new use cases?

■ What types of data will we have? How will the types change or be increased over time?

■ How will we query from it (and what are the most common queries users will want to run?)

■ How will we manage and scale the data in use?

■ How will we protect the data from data loss, disaster or corruption?

■ How will we secure the data?

If these questions sound a lot like features in a data lifecycle, you're right. But, such basic questions about data are often overlooked in the rush to deliver, integrate, test and deploy application code. So often, what happens instead is an application team creates a design, then hands it off saying, "Okay, now create a data architecture to support the application."

This fundamental miss with data and collaboration at the start often leads to poor database architecture decisions later. It can also cause DevOps teams to resort to workarounds to accommodate such wrong architecture choices made at the start. This may cause some development teams to choose to circumvent DBA involvement altogether. In this case, they might even find themselves opting to use public cloud services instead (or some other types of data management) to support their application.

Instead, application teams should choose the path of early collaboration between developers and all functions of IT (including DBAs). This approach can offer better DevOps outcomes. It also helps move organizations toward a future where data architects provide an effective "bridge" between all parties critical to the application's success: From the needs of developers to the platforms provided by DBAs and the underlying infrastructures needed to enable them.

Changing Skillsets, Changing Minds

As with most things DevOps-related, success at the data layer has as much to do with changing the education, mindset and culture toward database architectures and database deployment methods as it does with the specific steps in the DevOps pipeline.

For example, if most DBAs in your organization are narrowly focused in one area (such as an Oracle DBA or SQL Server admins), your organization may benefit from investing in education to close skill gaps. Such investment can help expand the knowledge and exposure of that workforce to DevOps practices or emerging database approaches to cloud-native application patterns.

It can also help some organizations to first identify those individuals in the organization who want to transform, innovate, and learn about new tools, methods and practices.

Hiring those with that expertise already in place is another option. When you hire new skillsets, however, the answer may not be just to hire several noSQL administrators. This tactic will not necessarily solve your data problem, either. It may be just as beneficial (or more so) to hire someone with little specific noSQL skills but who is good at thinking about data in a different way.

Business First, Technology Second

In our practice, we are often asked to weigh in on technology choices to support DevOps efforts in emerging areas like IoT, Big Data and advanced analytics. Organizations ask us about using traditional relational databases (SQL Server, Oracle, etc.) vs. NoSQL databases (MongoDB, Cassandra, etc.). They ask about the merits of one NoSQL iteration over another. They ask about how to manage persistent data in container environments. They even ask about workarounds when the data choices they've made cause other, unexpected problems.

We do our best to answer these questions. But, whenever possible, we also tell organizations to back up a few steps and start, instead, from their business objectives:

■ What are you trying to accomplish?

■ What are your business drivers?

■ How do you hope data will be used in these contexts?

Answers to these questions can help you make better choices about the best data architecture to support your growing applications.

Ultimately, new tools and technologies can enable a lot of impressive data architectures. But, just throwing tools at the data problem is not enough. Early effort and investment in people, process and cross-departmental communication is just as important to a successful data outcome for any project.

Many of the discussions we have now are trying to take everyone back to the steps they skipped. This harks back to the fundamentals of software engineering: Addressing things early so you don't have problems later.

Unfortunately, data is the one component in the technology stack that you can't easily undo once you've chosen a specific path with your application's data architecture. When it comes to planning for data, it really is a "Pay Now" or "Pay Later" equation.

Isn't it best to take the time and choose your data path wisely rather than paying later for slowdowns or other issues with deployment and performance?

Jonathan Parnell is Senior Digital Transformation Architect at Insight, Cloud & Data Center Transformation
Share this

Industry News

April 03, 2025

StackGen has partnered with Google Cloud Platform (GCP) to bring its platform to the Google Cloud Marketplace.

April 03, 2025

Tricentis announced its spring release of new cloud capabilities for the company’s AI-powered, model-based test automation solution, Tricentis Tosca.

April 03, 2025

Lucid Software has acquired airfocus, an AI-powered product management and roadmapping platform designed to help teams prioritize and build the right products faster.

April 03, 2025

AutonomyAI announced its launch from stealth with $4 million in pre-seed funding.

April 02, 2025

Kong announced the launch of the latest version of Kong AI Gateway, which introduces new features to provide the AI security and governance guardrails needed to make GenAI and Agentic AI production-ready.

April 02, 2025

Traefik Labs announced significant enhancements to its AI Gateway platform along with new developer tools designed to streamline enterprise AI adoption and API development.

April 02, 2025

Zencoder released its next-generation AI coding and unit testing agents, designed to accelerate software development for professional engineers.

April 02, 2025

Windsurf (formerly Codeium) and Netlify announced a new technology partnership that brings seamless, one-click deployment directly into the developer's integrated development environment (IDE.)

April 02, 2025

Opsera raised $20M in Series B funding.

April 02, 2025

The Cloud Native Computing Foundation® (CNCF®), which builds sustainable ecosystems for cloud native software, is making significant updates to its certification offerings.

April 01, 2025

The Cloud Native Computing Foundation® (CNCF®), which builds sustainable ecosystems for cloud native software, announced the Golden Kubestronaut program, a distinguished recognition for professionals who have demonstrated the highest level of expertise in Kubernetes, cloud native technologies, and Linux administration.

April 01, 2025

Red Hat announced new capabilities and enhancements for Red Hat Developer Hub, Red Hat’s enterprise-grade internal developer portal based on the Backstage project.

April 01, 2025

Platform9 announced that Private Cloud Director Community Edition is generally available.

March 31, 2025

Sonatype expanded support for software development in Rust via the Cargo registry to the entire Sonatype product suite.

March 31, 2025

CloudBolt Software announced its acquisition of StormForge, a provider of machine learning-powered Kubernetes resource optimization.