How Developers Can Use ChatGPT as a Powerful Development Tool
June 07, 2023

Jeremy Jackson
Shift Lab

There's no buzzier technology right now than ChatGPT and for good reason. Because while the hype over how blockchain was going to transform trust, financial systems and even the business of selling art has yet to materialize, ChatGPT and, more broadly, generative AI are already delivering real value. In fact, ChatGPT is already so powerful, there are many who worry that generative AI will ultimately replace creative and information workers.


ChatGPT is not yet ready to produce code unsupervised

When it comes to software development, I personally believe that there will always be a need for talented human tech practitioners who are able to solve difficult, complex problems. But whatever your beliefs on that matter, the fact is, ChatGPT is not yet ready to produce code unsupervised, and doesn't take much time working with it to see why. Ask it enough complex questions, and while you'll always get something that sounds good, do a bit of digging and you may discover that it has completely invented some of what it says and may have even manufactured non-existent references. That said, in my experience, the code it produces can be helpful. In fact, in the hands of a seasoned developer, ChatGPT can be a very powerful tool.

Developer Use Cases for ChatGPT

ChatGPT can significantly increase the speed of development and the time it takes to create a solution … so long as it's used properly. As I noted above, it's not safe to use the code it generates without checking it first, which is why it's important that developers hone their instincts for what looks like well-formed code and what doesn't.

We've all pulled code from forums and sites like Stack Overflow, and no responsible developer would use that kind of code sight unseen. Treat code from ChatGPT in the same way. After all, it's likely the AI lifted the code from a site just like Stack Overflow and, perhaps, modified it a bit.

But even though it needs to be checked, the code ChatGPT generates is great for producing a framework on which to build. Note, however, that ChatGPT is best at creating code for specific, relatively simple tasks that are frequently repetitive. I often use it, for example, to create code for software testing and data connectors between applications. The more unique or complicated the task is, though, the more likely ChatGPT will produce flawed code.

ChatGPT is also an excellent tool for training developers and building knowledge. Hazy on how to create a higher-order function in Typescript? Fire up ChatGPT and type, "Explain the concept of higher-order functions in Typescript and provide three examples."

You're an expert with Ruby, but just getting your feet wet in Python? Type "Explain how to form class objects in Python and provide several examples."

Finally, ChatGPT is great at creating documentation, a task that most developers truly dislike doing. Again, you don't want to use ChatGPT to document complex, unique code, but for simple, straightforward code such as the expected outputs and inputs for a connector, the AI does a good job. You'll want to read through and edit it, of course, but that's much faster than creating the documentation from scratch. As a result, developers can spend more time doing what they truly love: building.

ChatGPT Best Practices

ChatGPT is a new tool in the developer's repertoire, but already, best practices are emerging.

Understand what an accurate answer will look like: ChatGPT is not a great tool in the hands of a programmer who's still wet behind the ears, because you need to have a clear understanding of what the code should look like so you'll know right away if anything is out of whack. Without this understanding, there's no way to use ChatGPT efficiently and safely.

Create prompts that are very specific, especially about the context of your query: Context is very important when you ask ChatGPT to provide code. Also, don't forget that you can specify in what format you want it to produce information. You don't have to settle for a wall of text and a snippet of code. For example, you might say, "I'm using React as my language, and as a programming assistant, I need to connect an AWS-hosted Postgres database to another application. Provide a connection string that substitutes any connection parameters with a curly brace. If I need more, I'll provide follow-up questions."

Never share identifying or proprietary information: Researchers can read your input and use it to further train the AI, which means there's a possibility that any code or information you give ChatGPT could show up as output for someone else at some point in the future. The ChatGPT FAQ(link is external) is clear on this. If you're using the API, the terms say that your input won't be used in training — even so, it's best to err on the side of caution.

There's little doubt that ChatGPT and other forms of generative AI are going to change how developers work, and it's only going to get better over time. Smart, experienced developers should begin now learning how to use these tools to generate frameworks, improve their knowledge, and become more efficient. The future is here — we'd all best prepare.

Jeremy Jackson is CEO of Shift Lab
Share this

Industry News

April 17, 2025

GitLab announced the general availability of GitLab Duo with Amazon Q.

April 17, 2025

Perforce Software and Liquibase announced a strategic partnership to enhance secure and compliant database change management for DevOps teams.

April 17, 2025

Spacelift announced the launch of Saturnhead AI — an enterprise-grade AI assistant that slashes DevOps troubleshooting time by transforming complex infrastructure logs into clear, actionable explanations.

April 16, 2025

CodeSecure and FOSSA announced a strategic partnership and native product integration that enables organizations to eliminate security blindspots associated with both third party and open source code.

April 16, 2025

Bauplan, a Python-first serverless data platform that transforms complex infrastructure processes into a few lines of code over data lakes, announced its launch with $7.5 million in seed funding.

April 15, 2025

Perforce Software announced the launch of the Kafka Service Bundle, a new offering that provides enterprises with managed open source Apache Kafka at a fraction of the cost of traditional managed providers.

April 14, 2025

LambdaTest announced the launch of the HyperExecute MCP Server, an enhancement to its AI-native test orchestration platform, HyperExecute.

April 14, 2025

Cloudflare announced Workers VPC and Workers VPC Private Link, new solutions that enable developers to build secure, global cross-cloud applications on Cloudflare Workers.

April 14, 2025

Nutrient announced a significant expansion of its cloud-based services, as well as a series of updates to its SDK products, aimed at enhancing the developer experience by allowing developers to build, scale, and innovate with less friction.

April 10, 2025

Check Point® Software Technologies Ltd.(link is external) announced that its Infinity Platform has been named the top-ranked AI-powered cyber security platform in the 2025 Miercom Assessment.

April 10, 2025

Orca Security announced the Orca Bitbucket App, a cloud-native seamless integration for scanning Bitbucket Repositories.

April 10, 2025

The Live API for Gemini models is now in Preview, enabling developers to start building and testing more robust, scalable applications with significantly higher rate limits.

April 09, 2025

Backslash Security(link is external) announced significant adoption of the Backslash App Graph, the industry’s first dynamic digital twin for application code.

April 09, 2025

SmartBear launched API Hub for Test, a new capability within the company’s API Hub, powered by Swagger.

April 09, 2025

Akamai Technologies introduced App & API Protector Hybrid.