The Cloud Native Computing Foundation® (CNCF®), which builds sustainable ecosystems for cloud native software, is making significant updates to its certification offerings.
In the DevOps rapid iteration cycle, too many organizations push their software and services out without being able to properly test for bugs that will show up with production traffic. This can cause unanticipated downtime, which means it's a big risk; it could take down the whole service. And no one wants that. So, what can be done?
The Perils of Buggy Code
The average cost of downtime is $5,600 a minute
Downtime is expensive — both financially and to the brand. Gartner has estimated that the average cost of downtime is $5,600 a minute(link is external). That's well over $300,000 an hour. To provide a real-world example of what this looks like, Microsoft Azure(link is external) suffered a major outage in November 2018 caused by issues introduced as part of a code update. The outage lasted for 14 hours and affected customers throughout Europe and beyond. With migration from legacy systems to microenvironments in the cloud, outages and downtime pose a growing and serious problem.
The kinds of quality-testing tools in use now don't enable developers to know how a new software version will perform in production or if it will even work in production. The Cloudbleed bug is an example of this problem. In February 2017, a coding error in a software upgrade from security vendor Cloudflare led to a serious vulnerability discovered by a Google researcher several months later.
In addition to having the immediate impacts mentioned above, flaws can lead to serious security issues later. Heartbleed(link is external), a vulnerability that arose in 2014 stemming from a programming mistake in the OpenSSL library, left large numbers of private keys and sensitive information exposed to the internet, enabling theft that would otherwise have been protected by SSL/TLS(link is external) encryption.
The Need to Test with Production Traffic
For today's increasingly frequent and fast development cycles, the way QA testing is typically done is no longer sufficient. Traditionally, DevOps teams haven't been able to do side-by-side testing of the production version and an upgrade candidate. The QA testing used by many organizations is a set of simulated test suites, which may not give comprehensive insight into the myriad ways in which customers may actually make use of the software. Just because upgraded code works under one set of testing parameters doesn't mean it will work in the unpredictable world of production usage.
In the case of the Cloudflare incident, the error went entirely unnoticed by end-users for an extended period of time and there were no system errors logged as a result of the flaw. Just as QA testing isn't sufficient, relying on system logs and users also has a limited scope for what can be detected.
Fixing bugs post-release ... estimated to be 5X as expensive as fixing them during design
Fixing bugs post-release gets pricey. It's estimated to be five times as expensive as fixing them during design — and it can lead to even costlier development delays. Giving software teams a way to identify potential bugs and security concerns prior to release can alleviate those delays. Clearly, testing with production traffic earlier in the code development process can save time, money and pain. Software and DevOps teams need a way to test quickly and accurately how new releases will perform with real (not just simulated) customer traffic and while maintaining the highest standards.
If teams have the capability to evaluate release versions side-by-side, they can quickly locate any differences or defects. In addition, they can gain real insight on network performance while also verifying the stability of upgrades and patches in a working environment. Doing this efficiently will significantly reduce the likelihood of releasing software that later needs to be rolled back. Rollbacks are expensive, as we saw in the case of the Microsoft Azure incident.
Teams sometimes stage rollouts, which necessitates running multiple software versions in production. The software teams put a small percentage of users on the new version, while most users run the status quo. Unfortunately, this approach to testing with production traffic is cumbersome to manage, costly and still vulnerable to rollbacks. The other problem with these kinds of rolling deployments is that while failures can be caught early in the process, they are — by design — only caught after they've affected end-users.
Issues Remain
Important questions arise at this point. For instance, how do you know whether the new software is causing the "failures"? How many "failures" does the business allow before recalling or rolling back the software, since the business does not observe side-by-side results from the same customer? This disrupts the end-user experience, which ultimately affects business operations and company reputation. And staging may not provide a sufficient sample to gauge the efficacy of the new release versus the entire population of customers.
Another issue that persists is cost. Even if you stage with only 10% of customers on the new version, if a failure costs more than $300,000 an hour, then a failure affecting 10% of users could potentially still cost more than $30,000 per hour. The impact is reduced, of course, but it's still significant, not counting the uncertainty of when to roll back.
A Better Way
Gone are the days when standard QA testing sufficed. Instead, DevOps teams have the option of testing in production and evaluating release versions side-by-side. This reduces the risk of bugs that comes with today's rapid dev cycles. This approach helps organizations release product that is secure and high-quality while avoiding expensive rollbacks or staging.
Industry News
The Cloud Native Computing Foundation® (CNCF®), which builds sustainable ecosystems for cloud native software, announced the Golden Kubestronaut program, a distinguished recognition for professionals who have demonstrated the highest level of expertise in Kubernetes, cloud native technologies, and Linux administration.
Red Hat announced new capabilities and enhancements for Red Hat Developer Hub, Red Hat’s enterprise-grade internal developer portal based on the Backstage project.
Platform9 announced that Private Cloud Director Community Edition is generally available.
Sonatype expanded support for software development in Rust via the Cargo registry to the entire Sonatype product suite.
CloudBolt Software announced its acquisition of StormForge, a provider of machine learning-powered Kubernetes resource optimization.
Mirantis announced the k0rdent Application Catalog – with 19 validated infrastructure and software integrations that empower platform engineers to accelerate the delivery of cloud-native and AI workloads wherever the\y need to be deployed.
Traefik Labs announced its Kubernetes-native API Management product suite is now available on the Oracle Cloud Marketplace.
webAI and MacStadium(link is external) announced a strategic partnership that will revolutionize the deployment of large-scale artificial intelligence models using Apple's cutting-edge silicon technology.
Development work on the Linux kernel — the core software that underpins the open source Linux operating system — has a new infrastructure partner in Akamai. The company's cloud computing service and content delivery network (CDN) will support kernel.org, the main distribution system for Linux kernel source code and the primary coordination vehicle for its global developer network.
Komodor announced a new approach to full-cycle drift management for Kubernetes, with new capabilities to automate the detection, investigation, and remediation of configuration drift—the gradual divergence of Kubernetes clusters from their intended state—helping organizations enforce consistency across large-scale, multi-cluster environments.
Red Hat announced the latest updates to Red Hat AI, its portfolio of products and services designed to help accelerate the development and deployment of AI solutions across the hybrid cloud.
CloudCasa by Catalogic announced the availability of the latest version of its CloudCasa software.
BrowserStack announced the launch of Private Devices, expanding its enterprise portfolio to address the specialized testing needs of organizations with stringent security requirements.
Chainguard announced Chainguard Libraries, a catalog of guarded language libraries for Java built securely from source on SLSA L2 infrastructure.