Spectro Cloud completed a $75 million Series C funding round led by Growth Equity at Goldman Sachs Alternatives with participation from existing Spectro Cloud investors.
DEVOPSdigest asked experts from across the IT industry for their opinions on what steps in the SDLC should be automated. Part 5, the final installment, covers deployment and production.
Start with Steps You Should Be Automating in the SDLC - Part 1
Start with Steps You Should Be Automating in the SDLC - Part 2
Start with Steps You Should Be Automating in the SDLC - Part 3
Start with Steps You Should Be Automating in the SDLC - Part 4
DEPLOYMENT
A common bottleneck in software development that I believe should receive higher priority for automation is deployment.
Logan Daigle
Director of DevOps Strategy and Delivery, CollabNet VersionOne
The deployment phase of the software development lifecycle (SDLC) is one that often happens in the background — most people have little or no visibility into its effectiveness until software is actually deployed and released to users. However, it's the phase with the largest impact on immediate usability, which requires it to be right from the moment of deployment. With an emphasis on powerful automation, companies can provide quality assurances for users and ensure an accelerated deployment process with the least amount of configuration errors, ultimately reducing costs for the business. Monitoring the effectiveness of automation at the deployment phase is one sure way to improve the final released product.
Kailem Anderson
VP of Product Management for Software and Services, Ciena
FEEDBACK LOOP
One area of automation that is often overlooked is how do we automate the collection of error information in production and deliver it back to a developer so that they can troubleshoot root cause more effectively. The state of the art for this has traditionally been the less-than-optimal adding logging statements and sifting through log data. However, it makes more sense to gather this data automatically from the runtime execution point where the information already exists, and feed that back to development to speed up the process of troubleshooting.
Tal Weiss
CTO and Co-Founder, OverOps
Observability is key to accelerating the application lifecycle from DevOps through production but with so many specialized monitoring tools in the mix, there is lots of room to improve on automating the feedback loop with the performance analysis effort, from design through implementation and test. And don't neglect to use automation to create integrated workflows across your network, app, and log monitoring.
Peco Karayanev
Product Management Director, Riverbed APM
Enterprises are leveraging complex cloud environments to build and deploy applications quickly and at scale, however doing this while trying to minimize performance issues has increasingly become an overwhelming task. As such, when it comes to the development process, automating continuous delivery and feedback has become necessary. By automating continuous delivery and feedback loops, teams can track all key technical metrics from each developer workstation all the way through CI/CD into Ops. Through fact-based feedback, such as memory consumption, CPU usage and response time, the team can stop faulty builds before they reach production and start deploying software faster and at a higher quality.
Andi Grabner
DevOps Activist, Dynatrace
ROLLBACK
Not many people think about the rollback part, as too many people want to make break-fix changes in production as opposed to rollback a deployment. But having an automated rollback is as necessary as the automated deployment.
Thomas LaRock
Head Geek, SolarWinds
PRODUCTION
There's two quick heuristics I use for working out what to automate next. One, pick the items that are closest to production as the problems you're solving with automation tend to be visible, and solving visible problems increases trust across the organization. Second, focus on small, easily understood fundamental building blocks that most of your services rely upon such as time synchronization, DNS, authentication and authorization.
Nigel Kersten
VP of Ecosystem Engineering, Puppet
OPS
Many organizations talk about DevOps, but actually only a very limited number of them focus on the Ops part. When doing DevOps, organizations should strive to fully automate Ops. They can start by automating the creation of change requests — removing manual approvals — and end with connecting and automatically trigggering their application monitoring tools when a new release is in the pipeline.
Andreas Prins
VP of Product Development, XebiaLabs
EVENT MANAGEMENT
With the rise of cloud-native environments that include serverless computing, microservices and container-based development, it makes sense to automate event management for IT teams. Artificial intelligence has advanced alert correlation and escalation in such a way that it's now possible to reduce the number of alerts for a given IT ecosystem and automate their escalation to the right teams regardless of complexity. This reduces "firefighting," and keeps DevOps teams focused on what they do best.
Prasad Dronamraju
Product Marketing Manager, OpsRamp
A process not often considered in these discussions may be event management. Since event management's purpose is to detect events, make sense of the events and determine the appropriate control action, this could potentially benefit every stage of the SDLC regardless of which development model was in use. The ability to quickly detect changes in state that impact a component or a service, whether that be a line of code or memory utilization in a server, is needed at multiple points in the SDLC. So, too, is the ability to automatically isolate and make sense of these events – the most important and challenging part of this process. Once we've detected and made sense of events, we can usually create the appropriate control actions that provide autonomous operations. Since monitoring is so closely related to event management, monitoring automation is critical to both accelerating flow and reducing defects.
John Worthington
Director, Product Marketing, eG Innovations
REPORTING
Consider automating and standardizing reporting for adherence with performance metrics for leaders in business and IT. Leaders that measure not only IT but Business metrics have less rework, surprises or discourse.
Jeanne Morain
Author and Strategist, iSpeak Cloud
TURNOVER
DevOps teams typically focus on one problem at a time, iterating until improvements slow down and moving on to another project. When you're automating the development process, keep project turnover in mind. Ensure that monitoring that is consistent with your corporate operations team is deployed at every step of the way. That doesn't have to be hard — expect to use open course components to push data directly into the IT tool chain. You'll be able to iterate at your speed and handle the turnover step with ease!
Kent Erickson
Alliance Strategist, Zenoss
Industry News
The Cloud Native Computing Foundation® (CNCF®), which builds sustainable ecosystems for cloud native software, has announced significant momentum around cloud native training and certifications with the addition of three new project-centric certifications and a series of new Platform Engineering-specific certifications:
Red Hat announced the latest version of Red Hat OpenShift AI, its artificial intelligence (AI) and machine learning (ML) platform built on Red Hat OpenShift that enables enterprises to create and deliver AI-enabled applications at scale across the hybrid cloud.
Salesforce announced agentic lifecycle management tools to automate Agentforce testing, prototype agents in secure Sandbox environments, and transparently manage usage at scale.
OpenText™ unveiled Cloud Editions (CE) 24.4, presenting a suite of transformative advancements in Business Cloud, AI, and Technology to empower the future of AI-driven knowledge work.
Red Hat announced new capabilities and enhancements for Red Hat Developer Hub, Red Hat’s enterprise-grade developer portal based on the Backstage project.
Pegasystems announced the availability of new AI-driven legacy discovery capabilities in Pega GenAI Blueprint™ to accelerate the daunting task of modernizing legacy systems that hold organizations back.
Tricentis launched enhanced cloud capabilities for its flagship solution, Tricentis Tosca, bringing enterprise-ready end-to-end test automation to the cloud.
Rafay Systems announced new platform advancements that help enterprises and GPU cloud providers deliver developer-friendly consumption workflows for GPU infrastructure.
Apiiro introduced Code-to-Runtime, a new capability using Apiiro’s deep code analysis (DCA) technology to map software architecture and trace all types of software components including APIs, open source software (OSS), and containers to code owners while enriching it with business impact.
Zesty announced the launch of Kompass, its automated Kubernetes optimization platform.
MacStadium announced the launch of Orka Engine, the latest addition to its Orka product line.
Elastic announced its AI ecosystem to help enterprise developers accelerate building and deploying their Retrieval Augmented Generation (RAG) applications.
Red Hat introduced new capabilities and enhancements for Red Hat OpenShift, a hybrid cloud application platform powered by Kubernetes, as well as the technology preview of Red Hat OpenShift Lightspeed.
Traefik Labs announced API Sandbox as a Service to streamline and accelerate mock API development, and Traefik Proxy v3.2.