AI and API: How to Leverage AI Tools for API Security
November 08, 2023

Dotan Nahum
Check Point Software Technologies

The marriage between AI and API security seems like an odd pairing at first. Dubbed a threat to API security, generative AI applications can be easily customized to create and run multiple scenarios to expose weaknesses in APIs. Moreover, given the right datasets, hackers can train AI to plan and execute attacks that evade traditional API security solutions. However, those qualities make artificial intelligence and machine learning the technology that may be missing in your API security stack.

Before we discuss how you can harness AI to secure your APIs, let's talk about why API security is now considered a C-level cybersecurity concern.

Why API Security is the New AppSec

API communications today make up over 80% of all traffic on the internet, and the average enterprise uses over 15,000 APIs. The same report found that 41% of organizations surveyed experienced an API security incident last year, and other reports claim the number is much higher — up to 76% in some cases. In monetary terms, the average annual cost associated with API-related cyber loss is around $12 to 23 billion in the US alone — hefty, to say the least.

But what is it that makes APIs so attractive to malefactors?

A combination of two factors: the sheer volume of API traffic (which is expected to grow twice as fast as HTML traffic) and the ease with which bad actors can bypass traditional API security solutions like WAF, log analysis, and API gateways.

An emerging threat should require advanced protection, yet this isn't necessarily the reality. 77% of businesses admit that their existing tools aren't very effective in preventing API attacks. The same survey revealed that 31% of businesses surveyed had experienced a sensitive data exposure or privacy incident, and 17% were the victims of a security breach resulting from an API attack.

How Can AI/ML Tools Help?

Can the answer to API security challenges be AI? Many answer with an optimistic yes, but only a few envision where AI fits their API security strategies — and how. So, what can AI do for API security?

Secure API Development

The use of AI/ML tools in software development is nothing new, and API developers avidly adopt AI in various aspects of their workflows. 60% of API developers already use AI tools in their work, though only 18% said they use AI to flag potential vulnerabilities in API code.

While not directly related to coding, another way AI/ML tools help secure APIs from the core is by producing and updating the documentation for the many APIs businesses employ.

API Discovery

It takes about forty hours to discover, document, migrate, refactor, and remediate security issues for each API. Considering the API sprawl plaguing enterprises, lack of visibility into the APIs employed is one of the main challenges in API security. Often, organizations focus on high-risk APIs while turning a blind eye to shadow APIs and zombie APIs that may leak sensitive information.

AI-enhanced API management tools can help discover and document the different exit points and provide infosec teams with contextual intelligence on managing and protecting the APIs (or eliminating them if they are no longer used).

API Testing

The most apparent use for AI/ML tools in API security is in testing and validating APIs. Compared to humans, AI tools can write thousands of tests and scenarios to run against your API, and they don't require as much time and resources to achieve broad coverage. So, it's no wonder numerous API management and security products have added AI features to their testing tools.

Behavior Analysis

Another advantage AI has over humans is its ability to instantly spot anomalies in behavior across masses of API calls to uncover potential malefactor activity in their search for exploitable application logic flaws. The tools traditionally used to protect APIs lack the context to detect such supposedly unrelated malefactor actions over time. They also don't protect against API abuse and attacks over authenticated APIs, which count for up to 80% of all API attacks.

Prioritization and Contextualization of Alerts

One of the challenges with cybersecurity overall and API threats is the volume of logs and alerts produced. While AI can never fully replace human analysis, it can provide IT, infosec, and DevOps teams with more actionable and contextualized information, as well as prioritize the severity of incidents or vulnerabilities to help resolve the most critical ones in a timely manner.

The Future of API Security With AI/ML Tooling

APIs are vital in modern applications, but traditional API security tools and policy-based mechanisms are no longer enough. As bad actors explore the capabilities of AI, so do API security vendors.

To be effective and accurate, AI must be trained on masses of historical API traffic logs and best practices for threat detection and validation. But, once trained, AI tools can monitor and analyze all API traffic to detect increasingly sophisticated attacks and arm security professionals with the information they need when they need it to stop attacks from becoming breaches.

Dotan Nahum is Head of Developer-First Security at Check Point Software Technologies
Share this

Industry News

December 19, 2024

Check Point® Software Technologies Ltd. has been recognized as a Leader in the 2024 Gartner® Magic Quadrant™ for Email Security Platforms (ESP).

December 19, 2024

Progress announced its partnership with the American Institute of CPAs (AICPA), the world’s largest member association representing the CPA profession.

December 18, 2024

Kurrent announced $12 million in funding, its rebrand from Event Store and the official launch of Kurrent Enterprise Edition, now commercially available.

December 18, 2024

Blitzy announced the launch of the Blitzy Platform, a category-defining agentic platform that accelerates software development for enterprises by autonomously batch building up to 80% of software applications.

December 17, 2024

Sonata Software launched IntellQA, a Harmoni.AI powered testing automation and acceleration platform designed to transform software delivery for global enterprises.

December 17, 2024

Sonar signed a definitive agreement to acquire Tidelift, a provider of software supply chain security solutions that help organizations manage the risk of open source software.

December 17, 2024

Kindo formally launched its channel partner program.

December 16, 2024

Red Hat announced the latest release of Red Hat Enterprise Linux AI (RHEL AI), Red Hat’s foundation model platform for more seamlessly developing, testing and running generative artificial intelligence (gen AI) models for enterprise applications.

December 16, 2024

Fastly announced the general availability of Fastly AI Accelerator.

December 12, 2024

Amazon Web Services (AWS) announced the launch and general availability of Amazon Q Developer plugins for Datadog and Wiz in the AWS Management Console.

December 12, 2024

vFunction released new capabilities that solve a major microservices headache for development teams – keeping documentation current as systems evolve – and make it simpler to manage and remediate tech debt.

December 11, 2024

CyberArk announced the launch of FuzzyAI, an open-source framework that helps organizations identify and address AI model vulnerabilities, like guardrail bypassing and harmful output generation, in cloud-hosted and in-house AI models.

December 11, 2024

Grid Dynamics announced the launch of its developer portal.

December 10, 2024

LTIMindtree announced a strategic partnership with GitHub.