AI and API: How to Leverage AI Tools for API Security
November 08, 2023

Dotan Nahum
Check Point Software Technologies

The marriage between AI and API security seems like an odd pairing at first. Dubbed a threat to API security, generative AI applications can be easily customized to create and run multiple scenarios to expose weaknesses in APIs. Moreover, given the right datasets, hackers can train AI to plan and execute attacks that evade traditional API security solutions. However, those qualities make artificial intelligence and machine learning the technology that may be missing in your API security stack.

Before we discuss how you can harness AI to secure your APIs, let's talk about why API security is now considered a C-level cybersecurity concern.

Why API Security is the New AppSec

API communications today make up over 80% of all traffic on the internet, and the average enterprise uses over 15,000 APIs. The same report found that 41% of organizations surveyed experienced an API security incident last year, and other reports claim the number is much higher — up to 76% in some cases. In monetary terms, the average annual cost associated with API-related cyber loss is around $12 to 23 billion in the US alone — hefty, to say the least.

But what is it that makes APIs so attractive to malefactors?

A combination of two factors: the sheer volume of API traffic (which is expected to grow twice as fast as HTML traffic) and the ease with which bad actors can bypass traditional API security solutions like WAF, log analysis, and API gateways.

An emerging threat should require advanced protection, yet this isn't necessarily the reality. 77% of businesses admit that their existing tools aren't very effective in preventing API attacks. The same survey revealed that 31% of businesses surveyed had experienced a sensitive data exposure or privacy incident, and 17% were the victims of a security breach resulting from an API attack.

How Can AI/ML Tools Help?

Can the answer to API security challenges be AI? Many answer with an optimistic yes, but only a few envision where AI fits their API security strategies — and how. So, what can AI do for API security?

Secure API Development

The use of AI/ML tools in software development is nothing new, and API developers avidly adopt AI in various aspects of their workflows. 60% of API developers already use AI tools in their work, though only 18% said they use AI to flag potential vulnerabilities in API code.

While not directly related to coding, another way AI/ML tools help secure APIs from the core is by producing and updating the documentation for the many APIs businesses employ.

API Discovery

It takes about forty hours to discover, document, migrate, refactor, and remediate security issues for each API. Considering the API sprawl plaguing enterprises, lack of visibility into the APIs employed is one of the main challenges in API security. Often, organizations focus on high-risk APIs while turning a blind eye to shadow APIs and zombie APIs that may leak sensitive information.

AI-enhanced API management tools can help discover and document the different exit points and provide infosec teams with contextual intelligence on managing and protecting the APIs (or eliminating them if they are no longer used).

API Testing

The most apparent use for AI/ML tools in API security is in testing and validating APIs. Compared to humans, AI tools can write thousands of tests and scenarios to run against your API, and they don't require as much time and resources to achieve broad coverage. So, it's no wonder numerous API management and security products have added AI features to their testing tools.

Behavior Analysis

Another advantage AI has over humans is its ability to instantly spot anomalies in behavior across masses of API calls to uncover potential malefactor activity in their search for exploitable application logic flaws. The tools traditionally used to protect APIs lack the context to detect such supposedly unrelated malefactor actions over time. They also don't protect against API abuse and attacks over authenticated APIs, which count for up to 80% of all API attacks.

Prioritization and Contextualization of Alerts

One of the challenges with cybersecurity overall and API threats is the volume of logs and alerts produced. While AI can never fully replace human analysis, it can provide IT, infosec, and DevOps teams with more actionable and contextualized information, as well as prioritize the severity of incidents or vulnerabilities to help resolve the most critical ones in a timely manner.

The Future of API Security With AI/ML Tooling

APIs are vital in modern applications, but traditional API security tools and policy-based mechanisms are no longer enough. As bad actors explore the capabilities of AI, so do API security vendors.

To be effective and accurate, AI must be trained on masses of historical API traffic logs and best practices for threat detection and validation. But, once trained, AI tools can monitor and analyze all API traffic to detect increasingly sophisticated attacks and arm security professionals with the information they need when they need it to stop attacks from becoming breaches.

Dotan Nahum is Head of Developer-First Security at Check Point Software Technologies
Share this

Industry News

March 06, 2025

Parasoft is showcasing its latest product innovations at embedded world Exhibition, booth 4-318, including new GenAI integration with Microsoft Visual Studio Code (VS Code) to optimize test automation of safety-critical applications while reducing development time, cost, and risk.

March 06, 2025

JFrog announced general availability of its integration with NVIDIA NIM microservices, part of the NVIDIA AI Enterprise software platform.

March 06, 2025

CloudCasa by Catalogic announce an integration with SUSE® Rancher Prime via a new Rancher Prime Extension.

March 05, 2025

MacStadium announced the extended availability of Orka Cluster 3.2, establishing the market’s first enterprise-grade macOS virtualization solution available across multiple deployment options.

March 05, 2025

JFrog is partnering with Hugging Face, host of a repository of public machine learning (ML) models — the Hugging Face Hub — designed to achieve more robust security scans and analysis forevery ML model in their library.

March 05, 2025

Copado launched DevOps Automation Agent on Salesforce's AgentExchange, a global ecosystem marketplace powered by AppExchange for leading partners building new third-party agents and agent actions for Agentforce.

March 05, 2025

Harness completed its merger with Traceable, effective March 4, 2025.

March 04, 2025

JFrog released JFrog ML, an MLOps solution as part of the JFrog Platform designed to enable development teams, data scientists and ML engineers to quickly develop and deploy enterprise-ready AI applications at scale.

March 04, 2025

Progress announced the addition of Web Application Firewall (WAF) functionality to Progress® MOVEit® Cloud managed file transfer (MFT) solution.

March 04, 2025

Couchbase launched Couchbase Edge Server, an offline-first, lightweight database server and sync solution designed to provide low latency data access, consolidation, storage and processing for applications in resource-constrained edge environments.

March 04, 2025

Sonatype announced end-to-end AI Software Composition Analysis (AI SCA) capabilities that enable enterprises to harness the full potential of AI.

March 03, 2025

Aviatrix® announced the launch of the Aviatrix Kubernetes Firewall.

March 03, 2025

ScaleOps announced the general availability of their Pod Placement feature, a solution that helps companies manage Kubernetes infrastructure.

March 03, 2025

Cloudsmith raised a $23 million Series B funding round led by TCV, with participation from Insight Partners and existing investors.

February 27, 2025

IBM has completed its acquisition of HashiCorp, whose products automate and secure the infrastructure that underpins hybrid cloud applications and generative AI.