Anaconda Enterprise 5.2 Released
July 17, 2018

Anaconda announced the availability of Anaconda Enterprise 5.2.

This latest release adds capabilities for NVIDIA GPU-accelerated, scalable machine learning and cloud-native model management to Anaconda’s popular AI enablement platform for teams at scale.

“As enterprises transition to new technologies like containers and orchestration frameworks, organizations are pivoting to take advantage in areas such as data science and machine learning,” said John L Myers, Managing Research Director Business Intelligence at Enterprise Management Associates (EMA). “Encapsulating the complexity of data management and model deployment from data scientists with platforms such as Kubernetes and Docker allows data science teams to scale to meet the ML model goals of business stakeholders. An AI/ML enablement platform, such as Anaconda Enterprise, will enable organizations to make this streamlined process a reality.”

“Data scientists require their AI models to be deployed into production to propel their organizations forward. However, world-class machine learning requires petaflop-scale model training, made economically viable by GPUs, and automated deployment into production IT environments,” said Mathew Lodge, SVP of Products and Marketing, Anaconda Inc. “With Anaconda Enterprise 5.2, we’re enabling those within the enterprise to train models on the full data set at scale, including scheduling to make effective use of GPUs, and then deploy to production with one click. All without having to become an expert in containers, DevOps and Kubernetes.”

Anaconda Enterprise uses cloud native approaches, including Docker and Kubernetes, to scale data science and machine learning across teams and clusters while simplifying and automating AI/ML governance and reproducibility. For IT leaders, Anaconda Enterprise ensures the highest productivity environment for data scientists without forcing them into “walled garden” approaches that don’t scale. Anaconda Enterprise integrates directly with the organization’s authentication, source code control, and data lakes and ensures end-to-end governance and control.

Anaconda Enterprise is the AI enablement platform that provides the foundation for AI/ML libraries and toolkits (e.g., TensorFlow, Scikit-Learn, MXNet, PyTorch and XGBoost), empowering organizations to deploy and manage them quickly and easily.

“Cloud native technologies deliver dramatic improvements to software velocity, quality and scale for organizations of any size. Fortunately, these benefits also applied to the data science space,” said Dan Kohn, Executive Director of the Cloud Native Computing Foundation. “Platforms like Anaconda Enterprise, built on Kubernetes, make it possible for data scientists and IT teams to modernize their operations and support agile, cloud native infrastructures.”

The Latest

August 16, 2018

There once was a time in software development where developers could design, build and then think about their software's security. However in today's highly connected, API-driven application environment, this approach is simply too risky as it exposes the software to vulnerabilities ...

August 15, 2018

Microservices are a hot topic in IT circles these days. The idea of a modular approach to system building – where you have numerous, smaller software services that talk to each other instead of monolithic components – has many benefits ...

August 13, 2018

Agile is expanding within the enterprise. Agile adoption is growing within organizations, both more broadly and deeply, according to the 12th annual State of Agile report from CollabNet VersionOne. A higher percentage of respondents this year report that "all or almost all" of their teams are agile, and that agile principles and practices are being adopted at higher levels in the organization ...

August 09, 2018

For the past 13 years, the Ponemon Institute has examined the cost associated with data breaches of less than 100,000 records, finding that the costs have steadily risen over the course of the study. The average cost of a data breach was $3.86 million in the 2018 study, compared to $3.50 million in 2014 – representing nearly 10 percent net increase over the past 5 years of the study ...

August 08, 2018

Hidden costs in data breaches – such as lost business, negative impact on reputation and employee time spent on recovery – are difficult and expensive to manage, according to the 2018 Cost of a Data Breach Study, sponsored by IBM Security and conducted by Ponemon Institute. The study found that the average cost of a data breach globally is $3.86 million ...

August 06, 2018

The previous chapter in this WhiteHat Security series discussed dependencies as the second step of the Twelve-Factor App. This next chapter examines the security component of step three of the Twelve-Factor methodology — storing configurations within the environment.

August 02, 2018

Results from new Forrester Consulting research reveal the 20 most important Agile and DevOps quality metrics that separate DevOps/Agile experts from their less advanced peers ...

July 31, 2018

Even organizations that understand the importance of cybersecurity in theory often stumble when it comes to marrying security initiatives with their development and operations processes. Most businesses agree that everyone should be responsible for security, but this principle is not being upheld on a day-to-day basis in many organizations. That’s bad news for everyone. Here are some best practices for implementing SecOps ...

July 30, 2018

While the technologies, processes, and cultural shifts of DevOps have improved the ability of software teams to deliver reliable work rapidly and effectively, security has not been a focal point in the transformation of cloud IT infrastructure. SecOps is a methodology that seeks to address this by operationalizing and hardening security throughout the software lifecycle ...

July 26, 2018

Organizations are shifting away from traditional, monolithic architectures, with three-quarters of survey respondents delivering at least some of their applications and more than one-third delivering most of their applications as microservices, according to the State of DevOps Observability Report from Scalyr ...

Share this